

Spectral Methods for Dimensionality Reduction A Literature Review

Jay Paek

UCSD Mathematics Directed Reading Program Project Presentation, Spring 2024 Mentor: Qihao Ye

We have the following goals for this presentation:

- **Motivation:** Explain the curse of dimensionality in data science and classical methods in feature extraction and dimension-reduction techniques.
- Main Algorithm: Provide an intuitive understanding of the theory behind Laplacian eigenmaps and diffusion maps.
- Numerical Experiments: Present results from simulations done on datasets.
- Theoretical Guarantees: Introduce theoretical aspects of these techniques and some of the fundamental theorem in the papers.

Table of Contents

[Motivation](#page-3-0)

[Main Algorithm](#page-8-0)

[Numerical Experiments](#page-12-0)

[Theoretical Guarantees](#page-18-0)

Table of Contents

[Motivation](#page-3-0)

[Main Algorithm](#page-8-0)

[Numerical Experiments](#page-12-0)

[Theoretical Guarantees](#page-18-0)

Curse of Dimensionality

- Data points are in high dimensions but could lie in lower dimensional manifold.
- Behavior of these manifolds are not easily predictable in higher dimensions [Motivating Example 1].
- How to learn the manifold?

Motivating Examples

Example 1: Uniform sampling from an ℓ_{∞} -ball

Consider the unit-norm ball (defined by the ℓ_{∞} norm) in \mathbb{R}^d . Let $[\mathbf{x}]_i$ denote the i th entry of \mathbf{x}_i .

$$
\mathcal{S} = \{\mathbf{x} \in \mathbb{R}^d: \max_{1 \leq i \leq d} |[\mathbf{x}]_i| < 1\}
$$

Let us sample from this sample space under a uniform distribution. Each coordinate is independent. $\frac{1}{2}$ is the continuous contract to the Figure: An ℓ_{∞} -ball in $\frac{1}{2}$

 \mathbb{R}^3 .

What is the probability of sampling a point such that $|[\mathbf{x}]_i| < 0.99, \forall 1 \leq i \leq d$?

Motivating Examples

Example 1: Uniform sampling from an ℓ_{∞} -ball

Let
$$
X : \mathcal{F} \to \mathbb{R}^d
$$
 be a random vector.

$$
P(||X||_{\infty} < 0.99) \\
= \prod_{i=1}^{d} P(||X]_i| < 0.99) = 0.99^d
$$

Notice if $d \gg 0$, then $P(||X||_{\infty} < 0.99) \rightarrow 0$

Figure: An ℓ_{∞} -ball in \mathbb{R}^3 .

"High-dimensional orange is just the peel!" - Mikhail Belkin

Motivating Examples

Example 2: Principle Component Analysis

Consider a clustering task with two clusters with sample mean and covariance \bar{x}_1 , \bar{x}_2 and $\bar{\Sigma}_1, \bar{\Sigma}_2$, respectively. Which direction should we project to perform most optimal classification?

"Some traits are easier to discriminate than others."

- Nuno Vasconcelos

Figure: 2D Gaussian mixture.

Table of Contents

[Motivation](#page-3-0)

[Main Algorithm](#page-8-0)

[Numerical Experiments](#page-12-0)

[Theoretical Guarantees](#page-18-0)

Algorithm Preparation

Data coloured with first DC.

Figure: Swiss roll dataset $\subset \mathbb{R}^3$

Orientation: 240.0 degrees

Orientation: 360.0 degrees

Orientation: 120.0 degrees

3 Figure: Horse dataset $\subset \mathbb{R}^{180 \times 200 \times 3}$ [\[2\]](#page-30-1)

ı

Graph Construction

Laplacian Eigenmap [4]

\n
$$
[W]_{i,j} = \begin{cases}\n\exp\left\{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\epsilon}\right\} & \mathbf{x}_i, \mathbf{x}_j \text{ connected} \\
\mathbf{x}_i, \mathbf{x}_j \text{ disconnected}\n\end{cases}
$$
\nDiffusion Map [1]

\n
$$
W = P^t, \qquad [P]_{i,j} = \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{\sum_{\mathbf{z} \in X} K(\mathbf{x}_i, \mathbf{z})}
$$

Spectral Decomposition

then for every sample:

$$
\mathbf{x}_i \mapsto [\psi_1(i), \ldots, \psi_m(i)]
$$

Table of Contents

[Motivation](#page-3-0)

[Main Algorithm](#page-8-0)

[Numerical Experiments](#page-12-0)

[Theoretical Guarantees](#page-18-0)

Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset with 10000 points.

Data coloured with first DC

With the Gaussian similarity kernel that applies to the nearest 200 points, we can recover the following:

Figure: Swiss roll dataset

Figure: Projection to 2 diffusion coordinates

Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset with 6000 points.

Data coloured with first DC

Figure: Swiss roll dataset

With the Gaussian similarity kernel that applies to the nearest 200 points, we can recover the following:

Figure: Projection to 2 diffusion coordinates

Experiment 2: Diffusion map for orientation learning

Consider the following dataset with 1000 image that are $(180 \times 200 \times 3)$

We construct the transition probability matrix with respect to a Gaussian kernel.

Figure: Horse orientation data

Figure: Transition matrix P for horse dataset

Experiment 2: Diffusion map for orientation learning

With the Gaussian similarity kernel, we can recover the embedding:

Figure: Projection to 2 diffusion coordinates. Color denotes the orientation in radians.

Graph the diffusion distance w.r.t. the 0◦ orientation sample

Figure: Graph of sample index vs. diffusion distance.

Additional Comments

- Feature extraction is orientation invariant w.r.t feature and distance invariant w.r.t. data points.
- Computing eigenvectors for an $N \times N$ matrix is not optimal.
- Large dataset needed for optimal learning.
- Possible applications:
	- Known/semi-known environment SLAM.
	- Facial recognition
	- Geometric data interpretation

Table of Contents

[Motivation](#page-3-0)

[Main Algorithm](#page-8-0)

[Numerical Experiments](#page-12-0)

[Theoretical Guarantees](#page-18-0)

Adjacency graph for samples

Form an edge between $\mathsf{x}_i,\mathsf{x}_j$ if they are "close" to each other.

- Neighborhood relation: connect $\mathbf{x}_i, \mathbf{x}_j$ if $||\mathbf{x}_i \mathbf{x}_j|| < \epsilon$, for a chosen ϵ and distance metric.
	- Advantages: Makes geometric sense, forms an equivalence relation between points.
	- Disadvantages: Selection of ϵ , can form too many edges or isolate points.
- k-nearest neighbors: connect x_i, x_j if x_j is the within the kth closest sample.
	- Advantages: Easier computationally, will never have a disconnected graph.
	- Disadvantages: Less geometric intuition.

Attach weights to edges

For weights, the paper proposes two options:

• Gaussian kernel with parameter $t \in \mathbb{R}$. Let W be a matrix such that $[W]_{i,j} = w_{ii}$ (ith row, jth column) is the the weight of the edge connecting $\mathsf{x}_i,\mathsf{x}_j$. Then

$$
w_{ij} = \begin{cases} \exp\{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma}\} & \mathbf{x}_i, \mathbf{x}_j \text{ connected} \\ 0 & \mathbf{x}_i, \mathbf{x}_j \text{ disconnected} \end{cases}
$$

• Intuition: Farther the point, the less correlation between two points. • Simple: taking $\sigma \to \infty$ results in the following kernel instead:

$$
w_{ij} = \begin{cases} 1 & \mathbf{x}_i, \mathbf{x}_j \text{ connected} \\ 0 & \mathbf{x}_i, \mathbf{x}_j \text{ disconnected} \end{cases}
$$

Spectral Analysis of Laplacian

We have now constructed graph $G = (\mathcal{V}, \mathcal{E})$. Assume this graph is connected, then construct a diagonal matrix D such that i.e. the column sums of W . The graph Laplacian is $\mathcal{L} = D - W$. Solve for vectors $\Phi \in \mathbb{R}^n$ such that

$$
L\Phi=\lambda D\Phi
$$

Then take Φ_1, \ldots, Φ_m where $0 \neq \lambda_1 \leq \ldots \leq \lambda_m \leq \ldots \leq \lambda_n$, then for every sample we encode it as:

$$
\mathbf{x}_i \mapsto \begin{bmatrix} \Phi_1(i) & \dots & \Phi_m(i) \end{bmatrix}
$$

The Φs are known as the Laplacian eigenmap [\[3\]](#page-30-4)[\[4\]](#page-30-2).

Remarks

Remark: Intuition of graph Laplacian

Laplacian is a matrix representation of a graph that encodes the "similarity" between the data points into each entry.

Remark: Isometry is not perfect

The general structure of the data is preserved in a local sense, but not in a global sense.

Spectral analysis of Markov chain

First we need some assumptions:

• Graph is connected then the Markov chain admits a unique stationary distribution:

$$
\pi(\mathbf{y}) = \frac{d(\mathbf{y})}{\sum_{\mathbf{x} \in X} d(\mathbf{x})}
$$

• The Markov chain is reversible:

$$
\pi(\mathbf{x})\rho(\mathbf{x},\mathbf{y})=\pi(\mathbf{y})\rho(\mathbf{y},\mathbf{x})
$$

 \bullet X is finite.

Then P admits vectors $\{\psi_l\}_{l>1}$ with eigenvalues $1 = \lambda_0 > |\lambda_1| > \ldots > |\lambda_n|.$

Why eigenvectors?

Markov chain with transition probability matrix P where:

 $P_{i,j} = p(\mathbf{x}_i, \mathbf{x}_j)$

 $P_{i,j}^{t}$ is the probability of transition from the i to j in t steps. Analyzing entries of repeated matrix multiplication \implies analysis of eigenvalues and eigenvectors.

Figure: Toy data set (Wikipedia)

Diffusion distances and coordinates

The diffusion distance between two samples for a given t is

$$
D_t(x,y) := ||p_t(x,.) - p_t(y,.)||^2_{L^2(X, d\mu/\pi)} = \int_X (p_t(x,u) - p_t(y,u))^2 \frac{d\mu(u)}{\pi(u)}
$$

Thankfully, we can solve for this distance exactly [\[1\]](#page-30-3):

$$
D_t(\mathbf{x}, \mathbf{y}) = \left(\sum_{l=1}^n \lambda_l^{2t} (\psi_l(\mathbf{x}) - \psi_l(\mathbf{y}))^2\right)^{\frac{1}{2}}
$$

But we can get at least δ -close by choosing $n_{t,\delta} < n$ sufficiently large:

$$
D_t(\mathbf{x}, \mathbf{y}) = \Big(\sum_{l=1}^{n_{t,\delta}} \lambda_l^{2t} (\psi_l(\mathbf{x}) - \psi_l(\mathbf{y}))^2\Big)^{\frac{1}{2}}
$$

Diffusion distances and coordinates

Recall similarity kernel $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j)$. With this kernel, construct a new kernel A

$$
A(\mathbf{x}_i, \mathbf{x}_j) = \frac{\sqrt{\pi(\mathbf{x}_i)}}{\sqrt{\pi(\mathbf{x}_j)}} p(\mathbf{x}_i, \mathbf{x}_j)
$$

We're working in a finite measure space, so the map is compact. Encode this kernel into a matrix. This is a symmetric linear map, therefore we can make a spectral decomposition of this map.

$$
A(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \geq 1} \lambda_l \phi_l(\mathbf{x}_i) \phi_l(\mathbf{x}_j)
$$

Diffusion distances and coordinates

$$
\frac{\sqrt{\pi(\mathbf{x}_i)}}{\sqrt{\pi(\mathbf{x}_j)}} p(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \geq 1} \lambda_l \phi_l(\mathbf{x}_i) \phi_l(\mathbf{x}_j)
$$

$$
p(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \geq 1} \lambda_l \frac{\phi_l(\mathbf{x}_i)}{\sqrt{\pi(\mathbf{x}_i)}} \Big(\sqrt{\pi(\mathbf{x}_j)} \phi_l(\mathbf{x}_j)\Big)
$$

$$
p^t(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \geq 1} \lambda_l^t \frac{\phi_l(\mathbf{x}_i)}{\sqrt{\pi(\mathbf{x}_i)}} \Big(\sqrt{\pi(\mathbf{x}_j)} \phi_l(\mathbf{x}_j)\Big)
$$

Diffusion distances and coordinates

$$
D_t(x,y) = \int_X (p_t(x,u) - p_t(y,u))^2 \frac{d\mu(u)}{\pi(u)}
$$

\n
$$
= \int_X \Big(\sum_{l \ge 1} \lambda_l^t \frac{\phi_l(x)}{\sqrt{\pi(x)}} \Big(\sqrt{\pi(u)} \phi_l(u) \Big) - \sum_{l \ge 1} \lambda_l^t \frac{\phi_l(y)}{\sqrt{\pi(y)}} \Big(\sqrt{\pi(u)} \phi_l(u) \Big) \Big)^2
$$

\n
$$
= \int_X \Big(\sum_{l \ge 1} \lambda_l^{2t} \Big(\frac{\phi_l(x)}{\sqrt{\pi(x)}} - \frac{\phi_l(y)}{\sqrt{\pi(y)}} \Big)^2 \Big(\sqrt{\pi(u)} \phi_l(u) \Big)^2 \frac{d\mu(u)}{\pi(u)}
$$

\n
$$
= \sum_{l \ge 1} \lambda_l^{2t} \Big(\frac{\phi_l(x)}{\sqrt{\pi(x)}} - \frac{\phi_l(y)}{\sqrt{\pi(y)}} \Big)^2 \int_X \Big(\phi_l(u) \Big)^2 d\mu(u)
$$

\n
$$
= \Big(\sum_{l \ge 1} \lambda_l^{2t} \Big(\psi_l(x) - \psi_l(y) \Big)^2
$$

Remarks

Remark: Computing the eigenvalues

By the construction of ϕ_I , it is left as an exercise to the viewer to show that $\psi(x) = \frac{\phi(x)}{\sqrt{1-x^2}}$ $\pi(x)$

Remark: Optimal embedding

 ϕ_l are eigenfunctions that send the datapoints to the diffusion coordinate space.

31 / 31

References

- [1] Ronald R. Coifman and Stéphane Lafon. "Diffusion maps". In: Applied and Computational Harmonic Analysis 21.1 (2006). Special Issue: Diffusion Maps and Wavelets, pp. 5-30. ISSN: 1063-5203. DOI: [https://doi.org/10.1016/j.acha.2006.04.006](https://doi.org/https://doi.org/10.1016/j.acha.2006.04.006). url: [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S1063520306000546) [S1063520306000546](https://www.sciencedirect.com/science/article/pii/S1063520306000546).
- [2] Roy R. Lederman and Bogdan Toader. "On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena". In: International Conference on Sampling Theory and Applications (SampTA 2023) (2023).
- [3] Partha Niyogi Mikhail Belkin. "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering". In: NeurIPS Vol. 14 Issue 14 (2001), pp. 585–591.

[4] Partha Niyogi Mikhail Belkin. "Laplacian eigenmaps for dimensionality reduction and data representation". In: Neural