

Numerical Experiments

Theoretical Guarantees

References

Spectral Methods for Dimensionality Reduction A Literature Review

Jay Paek

UCSD Mathematics Directed Reading Program Project Presentation, Spring 2024 Mentor: Qihao Ye

Goals

We have the following goals for this presentation:

- **Motivation:** Explain the curse of dimensionality in data science and classical methods in feature extraction and dimension-reduction techniques.
- Main Algorithm: Provide an intuitive understanding of the theory behind Laplacian eigenmaps and diffusion maps.
- Numerical Experiments: Present results from simulations done on datasets.
- **Theoretical Guarantees:** Introduce theoretical aspects of these techniques and some of the fundamental theorem in the papers.

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Table of Contents

Motivation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Table of Contents

Motivation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Numerical Experiments

Theoretical Guarantees

References

Curse of Dimensionality

- Data points are in high dimensions but could lie in lower dimensional manifold.
- Behavior of these manifolds are not easily predictable in higher dimensions [Motivating Example 1].
- How to learn the manifold?

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Motivating Examples

Example 1: Uniform sampling from an $\ell_\infty\text{-ball}$

Consider the unit-norm ball (defined by the ℓ_{∞} norm) in \mathbb{R}^d . Let $[\mathbf{x}]_i$ denote the *i*th entry of \mathbf{x} .

$$S = \{\mathbf{x} \in \mathbb{R}^d : \max_{1 \leq i \leq d} |[\mathbf{x}]_i| < 1\}$$

Let us sample from this sample space under a uniform distribution. Each coordinate is independent.

Figure: An ℓ_{∞} -ball in \mathbb{R}^3 .

What is the probability of sampling a point such that $|[\mathbf{x}]_i| < 0.99, \forall 1 \le i \le d$?

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Motivating Examples

Example 1: Uniform sampling from an $\ell_\infty\text{-ball}$

Let
$$X : \mathcal{F} \to \mathbb{R}^d$$
 be a random vector.

$$egin{aligned} & \mathcal{P}(||X||_{\infty} < 0.99) \ & = \prod_{i=1}^d \mathcal{P}(|[X]_i| < 0.99) = 0.99^d \end{aligned}$$

Notice if $d \gg 0$, then $P(||X||_{\infty} < 0.99) \rightarrow 0$

Figure: An ℓ_{∞} -ball in \mathbb{R}^3 .

"High-dimensional orange is just the peel!" - Mikhail Belkin

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Motivating Examples

Example 2: Principle Component Analysis

Consider a clustering task with two clusters with sample mean and covariance \bar{x}_1, \bar{x}_2 and $\bar{\Sigma}_1, \bar{\Sigma}_2$, respectively. Which direction should we project to perform most optimal classification?

"Some traits are easier to discriminate than others."

- Nuno Vasconcelos

Figure: 2D Gaussian mixture.

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Table of Contents

Motivation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Algorithm Preparation

Data coloured with first DC.

Figure: Swiss roll dataset $\subset \mathbb{R}^3$

Orientation: 0.0 degrees

Orientation: 240.0 degrees

Orientation: 120.0 degrees

Figure: Horse dataset $\subset \mathbb{R}^{180 \times 200 \times 3}$ [2]

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Graph Construction

Laplacian Eigenmap [4]
$$\begin{bmatrix} W \end{bmatrix}_{i,j} = \begin{cases} \exp\left\{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\epsilon}\right\} & \mathbf{x}_i, \mathbf{x}_j \text{ connected} \\ \mathbf{x}_i, \mathbf{x}_j \text{ disconnected} \end{cases}$$

Diffusion Map [1]
$$W = P^t, \qquad [P]_{i,j} = \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{\sum_{\mathbf{z} \in X} K(\mathbf{x}_i, \mathbf{z})}$$

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Spectral Decomposition

then for every sample:

$$\mathbf{x}_i \mapsto [\psi_1(i), \ldots, \psi_m(i)]$$

Main Algorithm 0000 Numerical Experiments

Theoretical Guarantees

References

Table of Contents

Motivation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Numerical Experiments

Theoretical Guarantees

Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset with 10000 points.

Data coloured with first DC.

With the Gaussian similarity kernel that applies to the nearest 200 points, we can recover the following:

Figure: Swiss roll dataset

Figure: Projection to 2 diffusion coordinates

Numerical Experiments

Theoretical Guarantees

Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset with 6000 points.

Figure: Swiss roll dataset

With the Gaussian similarity kernel that applies to the nearest 200 points, we can recover the following:

Figure: Projection to 2 diffusion coordinates

Data coloured with first DC.

Numerical Experiments

Theoretical Guarantees

Experiment 2: Diffusion map for orientation learning

Consider the following dataset with 1000 image that are $(180 \times 200 \times 3)$

Figure: Horse orientation data

We construct the transition probability matrix with respect to a Gaussian kernel.

Figure: Transition matrix *P* for horse dataset

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Experiment 2: Diffusion map for orientation learning

With the Gaussian similarity kernel, we can recover the embedding:

Figure: Projection to 2 diffusion coordinates. Color denotes the orientation in radians.

Graph the diffusion distance w.r.t. the 0° orientation sample

Figure: Graph of sample index vs. diffusion distance.

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Additional Comments

- Feature extraction is orientation invariant w.r.t feature and distance invariant w.r.t. data points.
- Computing eigenvectors for an $N \times N$ matrix is not optimal.
- Large dataset needed for optimal learning.
- Possible applications:
 - Known/semi-known environment SLAM.
 - Facial recognition
 - Geometric data interpretation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Table of Contents

Motivation

Main Algorithm

Numerical Experiments

Theoretical Guarantees

Theoretical Guarantees

Adjacency graph for samples

Form an edge between $\mathbf{x}_i, \mathbf{x}_j$ if they are "close" to each other.

- Neighborhood relation: connect x_i, x_j if ||x_i x_j|| < ε, for a chosen ε and distance metric.
 - *Advantages:* Makes geometric sense, forms an equivalence relation between points.
 - *Disadvantages:* Selection of ϵ , can form too many edges or isolate points.
- k-nearest neighbors: connect $\mathbf{x}_i, \mathbf{x}_j$ if \mathbf{x}_j is the within the *k*th closest sample.
 - *Advantages:* Easier computationally, will never have a disconnected graph.
 - *Disadvantages:* Less geometric intuition.

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Attach weights to edges

For weights, the paper proposes two options:

Gaussian kernel with parameter t ∈ ℝ. Let W be a matrix such that [W]_{i,j} = w_{ij} (ith row, jth column) is the the weight of the edge connecting x_i, x_j. Then

$$w_{ij} = \begin{cases} \exp\{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma}\} & \mathbf{x}_i, \mathbf{x}_j \text{ connected} \\ 0 & \mathbf{x}_i, \mathbf{x}_j \text{ disconnected} \end{cases}$$

Intuition: Farther the point, the less correlation between two points.
Simple: taking σ → ∞ results in the following kernel instead:

$$w_{ij} = egin{cases} 1 & \mathbf{x}_i, \mathbf{x}_j ext{ connected} \ 0 & \mathbf{x}_i, \mathbf{x}_j ext{ disconnected} \end{cases}$$

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Spectral Analysis of Laplacian

We have now constructed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. Assume this graph is connected, then construct a diagonal matrix D such that i.e. the column sums of W. The graph Laplacian is L = D - W. Solve for vectors $\Phi \in \mathbb{R}^n$ such that

$$L\Phi = \lambda D\Phi$$

Then take Φ_1, \ldots, Φ_m where $0 \neq \lambda_1 \leq \ldots \leq \lambda_m \leq \ldots \leq \lambda_n$, then for every sample we encode it as:

$$\mathbf{x}_i \mapsto \begin{bmatrix} \Phi_1(i) & \dots & \Phi_m(i) \end{bmatrix}$$

The Φ s are known as the Laplacian eigenmap [3][4].

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Remarks

Remark: Intuition of graph Laplacian

Laplacian is a matrix representation of a graph that encodes the "similarity" between the data points into each entry.

Remark: Isometry is not perfect

The general structure of the data is preserved in a local sense, but not in a global sense.

Theoretical Guarantees

Spectral analysis of Markov chain

First we need some assumptions:

• Graph is connected then the Markov chain admits a unique stationary distribution:

$$\pi(\mathbf{y}) = \frac{d(\mathbf{y})}{\sum_{\mathbf{x} \in X} d(\mathbf{x})}$$

• The Markov chain is reversible:

$$\pi(\mathbf{x}) \rho(\mathbf{x}, \mathbf{y}) = \pi(\mathbf{y}) \rho(\mathbf{y}, \mathbf{x})$$

• X is finite.

Then *P* admits vectors $\{\psi_l\}_{l\geq 1}$ with eigenvalues $1 = \lambda_0 > |\lambda_1| \ge \ldots \ge |\lambda_n|$.

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Why eigenvectors?

Markov chain with transition probability matrix *P* where:

 $P_{i,j} = p(\mathbf{x}_i, \mathbf{x}_j)$

 $P_{i,j}^t$ is the probability of transition from the *i* to *j* in *t* steps. Analyzing entries of repeated matrix multiplication \implies analysis of eigenvalues and eigenvectors.

Figure: Toy data set (Wikipedia)

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Diffusion distances and coordinates

The diffusion distance between two samples for a given t is

$$D_t(x,y) := ||p_t(x,.) - p_t(y,.)||^2_{L^2(X,d\mu/\pi)} = \int_X (p_t(x,u) - p_t(y,u))^2 \frac{d\mu(u)}{\pi(u)}$$

Thankfully, we can solve for this distance exactly [1]:

$$D_t(\mathbf{x}, \mathbf{y}) = \Big(\sum_{l=1}^n \lambda_l^{2t} (\psi_l(\mathbf{x}) - \psi_l(\mathbf{y}))^2 \Big)^{\frac{1}{2}}$$

But we can get at least δ -close by choosing $n_{t,\delta} < n$ sufficiently large:

$$D_t(\mathbf{x}, \mathbf{y}) = \Big(\sum_{l=1}^{n_{t,\delta}} \lambda_l^{2t}(\psi_l(\mathbf{x}) - \psi_l(\mathbf{y}))^2\Big)^{\frac{1}{2}}$$

Numerical Experiments

Theoretical Guarantees

Diffusion distances and coordinates

Recall similarity kernel $K(\mathbf{x}_i, \mathbf{x}_j)$. With this kernel, construct a new kernel A

$$egin{aligned} \mathcal{A}(\mathbf{x}_i,\mathbf{x}_j) &= rac{\sqrt{\pi(\mathbf{x}_i)}}{\sqrt{\pi(\mathbf{x}_j)}} p(\mathbf{x}_i,\mathbf{x}_j) \end{aligned}$$

We're working in a finite measure space, so the map is compact. Encode this kernel into a matrix. This is a symmetric linear map, therefore we can make a spectral decomposition of this map.

$$A(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \ge 1} \lambda_l \phi_l(\mathbf{x}_i) \phi_l(\mathbf{x}_j)$$

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Diffusion distances and coordinates

$$\frac{\sqrt{\pi(\mathbf{x}_i)}}{\sqrt{\pi(\mathbf{x}_j)}} p(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \ge 1} \lambda_l \phi_l(\mathbf{x}_i) \phi_l(\mathbf{x}_j)$$
$$p(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \ge 1} \lambda_l \frac{\phi_l(\mathbf{x}_i)}{\sqrt{\pi(\mathbf{x}_i)}} \left(\sqrt{\pi(\mathbf{x}_j)} \phi_l(\mathbf{x}_j) \right)$$
$$p^t(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l \ge 1} \lambda_l^t \frac{\phi_l(\mathbf{x}_i)}{\sqrt{\pi(\mathbf{x}_j)}} \left(\sqrt{\pi(\mathbf{x}_j)} \phi_l(\mathbf{x}_j) \right)$$

Main Algorithm

Numerical Experiments

Theoretical Guarantees

References

Diffusion distances and coordinates

$$\begin{split} D_{t}(x,y) &= \int_{X} (\rho_{t}(x,u) - \rho_{t}(y,u))^{2} \frac{d\mu(u)}{\pi(u)} \\ &= \int_{X} \left(\sum_{l \ge 1} \lambda_{l}^{t} \frac{\phi_{l}(x)}{\sqrt{\pi(x)}} \left(\sqrt{\pi(u)} \phi_{l}(u) \right) - \sum_{l \ge 1} \lambda_{l}^{t} \frac{\phi_{l}(y)}{\sqrt{\pi(y)}} \left(\sqrt{\pi(u)} \phi_{l}(u) \right) \right)^{2} \\ &= \int_{X} \left(\sum_{l \ge 1} \lambda_{l}^{2t} \left(\frac{\phi_{l}(x)}{\sqrt{\pi(x)}} - \frac{\phi_{l}(y)}{\sqrt{\pi(y)}} \right)^{2} \left(\sqrt{\pi(u)} \phi_{l}(u) \right)^{2} \frac{d\mu(u)}{\pi(u)} \\ &= \sum_{l \ge 1} \lambda_{l}^{2t} \left(\frac{\phi_{l}(x)}{\sqrt{\pi(x)}} - \frac{\phi_{l}(y)}{\sqrt{\pi(y)}} \right)^{2} \int_{X} \left(\phi_{l}(u) \right)^{2} d\mu(u) \\ &= \left(\sum_{l \ge 1} \lambda_{l}^{2t} \left(\psi_{l}(x) - \psi_{l}(y) \right)^{2} \right)^{2} \end{split}$$

Numerical Experiments

Theoretical Guarantees

References

Remarks

Remark: Computing the eigenvalues

By the construction of ϕ_l , it is left as an exercise to the viewer to show that $\psi(x) = \frac{\phi(x)}{\sqrt{\pi(x)}}$

Remark: Optimal embedding

 $\phi_{\rm I}$ are eigenfunctions that send the datapoints to the diffusion coordinate space.

Main Algorithm 0000 Numerical Experiments

Theoretical Guarantee

31 / 31

References

- [1] Ronald R. Coifman and Stéphane Lafon. "Diffusion maps". In: Applied and Computational Harmonic Analysis 21.1 (2006). Special Issue: Diffusion Maps and Wavelets, pp. 5-30. ISSN: 1063-5203. DOI: https://doi.org/10.1016/j.acha.2006.04.006. URL: https://www.sciencedirect.com/science/article/pii/ S1063520306000546.
- [2] Roy R. Lederman and Bogdan Toader. "On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena". In: International Conference on Sampling Theory and Applications (SampTA 2023) (2023).
- [3] Partha Niyogi Mikhail Belkin. "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering". In: *NeurIPS Vol. 14 Issue 14* (2001), pp. 585–591.

Partha Niyogi Mikhail Belkin. "Laplacian eigenmaps for dimensionality reduction and data representation". In: *Neural*