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Goals

We have the following goals for this presentation:

• Motivation: Explain the curse of dimensionality in data science and
classical methods in feature extraction and dimension-reduction
techniques.

• Main Algorithm: Provide an intuitive understanding of the theory
behind Laplacian eigenmaps and diffusion maps.

• Numerical Experiments: Present results from simulations done on
datasets.

• Theoretical Guarantees: Introduce theoretical aspects of these
techniques and some of the fundamental theorem in the papers.
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Curse of Dimensionality

• Data points are in high dimensions but could lie in lower dimensional
manifold.

• Behavior of these manifolds are not easily predictable in higher
dimensions [Motivating Example 1].

• How to learn the manifold?
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Motivating Examples

Example 1: Uniform sampling from an ℓ∞-ball

Consider the unit-norm ball (defined by the ℓ∞
norm) in Rd . Let [x]i denote the ith entry of x.

S = {x ∈ Rd : max
1≤i≤d

|[x]i | < 1}

Let us sample from this sample space under a
uniform distribution. Each coordinate is
independent.

Figure: An ℓ∞-ball in
R3.

What is the probability of sampling a point such that
|[x]i | < 0.99,∀1 ≤ i ≤ d?
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Motivating Examples

Example 1: Uniform sampling from an ℓ∞-ball

Let X : F → Rd be a random vector.

P(||X ||∞ < 0.99)

=
d∏

i=1

P(|[X ]i | < 0.99) = 0.99d

Notice if d ≫ 0, then P(||X ||∞ < 0.99) → 0 Figure: An ℓ∞-ball in
R3.

“High-dimensional orange is just the peel!” - Mikhail Belkin
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Motivating Examples

Example 2: Principle Component Analysis

Consider a clustering task with two clusters
with sample mean and covariance x̄1, x̄2 and
Σ̄1, Σ̄2, respectively. Which direction should
we project to perform most optimal
classification?

“Some traits are easier to discriminate than
others.”
- Nuno Vasconcelos

Figure: 2D Gaussian
mixture.
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Algorithm Preparation

Figure: Swiss roll dataset ⊂ R3 Figure: Horse dataset ⊂ R180×200×3 [2]
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Graph Construction

Laplacian Eigenmap [4] [W ]i ,j =

exp

{
−
||xi − xj ||2

ϵ

}
xi , xj connected

0 xi , xj disconnected

Diffusion Map [1] W = Pt , [P]i ,j =
K (xi , xj)∑

z∈X
K (xi , z)
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Spectral Decomposition

Laplacian Eigenmap

Construct D s.t. [D]i ,i =
∑n

j=1Wj ,i

Lψ = λDψ where L = D −W
ψ1, . . . , ψm where 0 ̸= λ0 ≤ λ1 ≤ . . . ≤ λm ≤ . . . ≤ λn,

Diffusion Map
{ψl}l≥1 with eigenvalues 1 = λ0 > |λ1| ≥ . . . ≥ |λn|.

Wψk = λkψk

then for every sample:

xi 7→ [ψ1(i), . . . , ψm(i)]
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Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset
with 10000 points.

Figure: Swiss roll dataset

With the Gaussian similarity kernel
that applies to the nearest 200
points, we can recover the
following:

Figure: Projection to 2 diffusion
coordinates
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Experiment 1: Laplacian eigenmap for swiss roll dataset

Construct the following toy dataset
with 6000 points.

Figure: Swiss roll dataset

With the Gaussian similarity kernel
that applies to the nearest 200
points, we can recover the
following:

Figure: Projection to 2 diffusion
coordinates
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Experiment 2: Diffusion map for orientation learning

Consider the following dataset with
1000 image that are
(180× 200× 3)

Figure: Horse orientation data

We construct the transition
probability matrix with respect to a
Gaussian kernel.

Figure: Transition matrix P for horse
dataset
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Experiment 2: Diffusion map for orientation learning

With the Gaussian similarity kernel,
we can recover the embedding:

Figure: Projection to 2 diffusion
coordinates. Color denotes the
orientation in radians.

Graph the diffusion distance w.r.t.
the 0◦ orientation sample

Figure: Graph of sample index vs.
diffusion distance.
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Additional Comments

• Feature extraction is orientation invariant w.r.t feature and distance
invariant w.r.t. data points.

• Computing eigenvectors for an N × N matrix is not optimal.

• Large dataset needed for optimal learning.
• Possible applications:

• Known/semi-known environment SLAM.
• Facial recognition
• Geometric data interpretation
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Adjacency graph for samples

Form an edge between xi , xj if they are “close” to each other.

• Neighborhood relation: connect xi , xj if ||xi − xj || < ϵ, for a chosen ϵ
and distance metric.

• Advantages: Makes geometric sense, forms an equivalence relation
between points.

• Disadvantages: Selection of ϵ, can form too many edges or isolate
points.

• k-nearest neighbors: connect xi , xj if xj is the within the kth closest
sample.

• Advantages: Easier computationally, will never have a disconnected
graph.

• Disadvantages: Less geometric intuition.
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Attach weights to edges
For weights, the paper proposes two options:

• Gaussian kernel with parameter t ∈ R. Let W be a matrix such that
[W ]i ,j = wij (ith row, jth column) is the the weight of the edge
connecting xi , xj . Then

wij =

{
exp{− ||xi−xj ||2

σ } xi , xj connected

0 xi , xj disconnected

• Intuition: Farther the point, the less correlation between two points.

• Simple: taking σ → ∞ results in the following kernel instead:

wij =

{
1 xi , xj connected

0 xi , xj disconnected
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Spectral Analysis of Laplacian

We have now constructed graph G = (V, E). Assume this graph is
connected, then construct a diagonal matrix D such that i.e. the column
sums of W . The graph Laplacian is L = D −W . Solve for vectors Φ ∈ Rn

such that
LΦ = λDΦ

Then take Φ1, . . . ,Φm where 0 ̸= λ1 ≤ . . . ≤ λm ≤ . . . ≤ λn, then for
every sample we encode it as:

xi 7→
[
Φ1(i) . . . Φm(i)

]
The Φs are known as the Laplacian eigenmap [3][4].
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Remarks

Remark: Intuition of graph Laplacian

Laplacian is a matrix representation of a graph that encodes the
“similarity” between the data points into each entry.

Remark: Isometry is not perfect

The general structure of the data is preserved in a local sense, but not in a
global sense.
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Spectral analysis of Markov chain

First we need some assumptions:

• Graph is connected then the Markov chain admits a unique stationary
distribution:

π(y) =
d(y)∑
x∈X d(x)

• The Markov chain is reversible:

π(x)p(x, y) = π(y)p(y, x)

• X is finite.

Then P admits vectors {ψl}l≥1 with eigenvalues
1 = λ0 > |λ1| ≥ . . . ≥ |λn|.
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Why eigenvectors?

Markov chain with transition
probability matrix P where:

Pi ,j = p(xi , xj)

Pt
i ,j is the probability of transition

from the i to j in t steps.
Analyzing entries of repeated
matrix multiplication =⇒ analysis
of eigenvalues and eigenvectors.

Figure: Toy data set (Wikipedia)
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Diffusion distances and coordinates
The diffusion distance between two samples for a given t is

Dt(x , y) := ||pt(x , .)−pt(y , .)||2L2(X ,dµ/π) =

∫
X
(pt(x , u)−pt(y , u))

2 dµ(u)

π(u)

Thankfully, we can solve for this distance exactly [1]:

Dt(x, y) =
( n∑

l=1

λ2tl (ψl(x)− ψl(y))
2
) 1

2

But we can get at least δ-close by choosing nt,δ < n sufficiently large:

Dt(x, y) =
( nt,δ∑

l=1

λ2tl (ψl(x)− ψl(y))
2
) 1

2
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Diffusion distances and coordinates

Recall similarity kernel K (xi , xj). With this kernel, construct a new kernel
A

A(xi , xj) =

√
π(xi )√
π(xj)

p(xi , xj)

We’re working in a finite measure space, so the map is compact. Encode
this kernel into a matrix. This is a symmetric linear map, therefore we can
make a spectral decomposition of this map.

A(xi , xj) =
∑
l≥1

λlϕl(xi )ϕl(xj)
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Diffusion distances and coordinates

√
π(xi )√
π(xj)

p(xi , xj) =
∑
l≥1

λlϕl(xi )ϕl(xj)

p(xi , xj) =
∑
l≥1

λl
ϕl(xi )√
π(xi )

(√
π(xj)ϕl(xj)

)

pt(xi , xj) =
∑
l≥1

λtl
ϕl(xi )√
π(xi )

(√
π(xj)ϕl(xj)

)
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Diffusion distances and coordinates

Dt(x , y) =

∫
X
(pt(x , u)− pt(y , u))

2 dµ(u)

π(u)

=

∫
X

(∑
l≥1

λtl
ϕl(x)√
π(x)

(√
π(u)ϕl(u)

)
−
∑
l≥1

λtl
ϕl(y)√
π(y)

(√
π(u)ϕl(u)

))2 dµ(u)

π(u)

=

∫
X

(∑
l≥1

λ2tl

( ϕl(x)√
π(x)

− ϕl(y)√
π(y)

)2(√
π(u)ϕl(u)

)2 dµ(u)

π(u)

=
∑
l≥1

λ2tl

( ϕl(x)√
π(x)

− ϕl(y)√
π(y)

)2
∫
X

(
ϕl(u)

)2
dµ(u)

=
(∑

l≥1

λ2tl

(
ψl(x)− ψl(y)

)2
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Remarks

Remark: Computing the eigenvalues

By the construction of ϕl , it is left as an exercise to the viewer to show
that ψ(x) = ϕ(x)√

π(x)

Remark: Optimal embedding

ϕl are eigenfunctions that send the datapoints to the diffusion coordinate
space.
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