
Spectral Methods for Dimensionality Reduction
Jay Paek

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, California
jpaek@ucsd.edu

Abstract—Dimensionality reduction is a pivotal technique in
data science and machine learning, addressing the challenges
posed by high-dimensional datasets. This report provides an in-
depth analysis of key dimensionality reduction methods, focusing
on spectral analysis and its applications. Specifically, we explore
Laplacian Eigenmaps and Diffusion Maps, two powerful methods
that leverage the spectral properties of graphs to uncover the
intrinsic geometry of data. These techniques are particularly
effective in preserving the local and global structures of datasets,
enabling more efficient data representation and visualization.

Laplacian Eigenmaps utilize the graph Laplacian to map
high-dimensional data points to a lower-dimensional space while
maintaining neighborhood relationships. Diffusion Maps extend
this concept by employing a diffusion process to capture the
connectivity and structure of the data manifold. The theoretical
foundations, algorithmic implementations, and practical applica-
tions of these methods are discussed in detail.

The report also examines the integration of these spectral
methods into deep learning frameworks, highlighting their role in
enhancing feature extraction, reducing computational complexity,
and improving model performance. Case studies and numerical
experiments demonstrate the efficacy of Laplacian Eigenmaps
and Diffusion Maps in various applications, including image
recognition, clustering, and manifold learning. Through this
comprehensive review, we aim to elucidate the significance of
spectral dimensionality reduction techniques in advancing the
capabilities of modern deep learning algorithms.

Index Terms—Manifold learning, dimensionality reduction,
spectral analysis, Markov chains

I. INTRODUCTION

Dimensionality reduction is a fundamental aspect of data
science and machine learning, rooted in the need to simplify
high-dimensional datasets without losing critical information.
The history of dimensionality reduction techniques dates
back to the early 20th century, with the advent of Principal
Component Analysis (PCA) by Karl Pearson in 1901. PCA
revolutionized the field by providing a method to reduce the
number of variables in a dataset while preserving as much
variance as possible. This technique laid the groundwork for
many subsequent developments in statistical and computa-
tional methods for handling complex, high-dimensional data.

As data science evolved, so did the need for more sophis-
ticated techniques capable of uncovering intricate structures
within high-dimensional spaces. The curse of dimensional-
ity, a term coined by Richard Bellman in the 1960s, high-
lighted the challenges posed by high-dimensional data, such
as increased computational complexity and sparsity of data
points. These challenges spurred the development of methods

like Linear Discriminant Analysis (LDA), Multidimensional
Scaling (MDS), and Isomap, each addressing specific aspects
of dimensionality reduction and manifold learning. These
techniques enabled researchers to project data into lower-
dimensional spaces where patterns and relationships become
more apparent and computationally manageable.

Manifold learning emerged as a powerful framework within
the broader context of dimensionality reduction. It is based
on the idea that high-dimensional data often lies on a
lower-dimensional manifold embedded within the higher-
dimensional space. Techniques such as Locally Linear Em-
bedding (LLE), Laplacian Eigenmaps, and Diffusion Maps
leverage this principle to uncover the intrinsic geometry of
the data. These methods rely on spectral graph theory and
nonlinear dimensionality reduction to preserve the local and
global structures of the data, offering significant advantages
over traditional linear methods in capturing complex, nonlinear
relationships.

The implications of manifold learning for data science are
profound. By revealing the underlying manifold structure,
manifold learning techniques enhance the interpretability and
visualization of high-dimensional data. They facilitate more
efficient data compression, noise reduction, and feature extrac-
tion, which are critical for various applications, including im-
age and speech recognition, bioinformatics, and social network
analysis. Moreover, these techniques have been instrumental
in advancing machine learning algorithms, particularly in deep
learning, where they help in pretraining neural networks, re-
ducing overfitting, and improving generalization by effectively
capturing the essential features of the data.

The evolution of dimensionality reduction techniques has
been pivotal in addressing the challenges of high-dimensional
data in data science. From the foundational principles of PCA
to the advanced methodologies of manifold learning, these
techniques have transformed the way we analyze and interpret
complex datasets. By preserving the intrinsic structure of data,
manifold learning methods provide a robust framework for
various applications, driving innovation and enhancing the
capabilities of modern machine learning and deep learning
algorithms. As data continues to grow in volume and complex-
ity, the importance of dimensionality reduction and manifold
learning will only increase, underscoring their critical role in
the future of data science.

In the realm of data science and machine learning, han-
dling high-dimensional data is a significant challenge. High-



dimensional datasets often contain many variables, which can
complicate analysis due to the so-called “curse of dimensional-
ity.” Dimensionality reduction techniques are essential to sim-
plify these datasets while retaining their intrinsic properties.
This report delves into two prominent spectral methods for
dimensionality reduction: Laplacian Eigenmaps and Diffusion
Maps. Both methods aim to uncover the underlying manifold
structure of high-dimensional data, thereby enabling more
efficient and effective data analysis.

II. THE CURSE OF DIMENSIONALITY

A. Understanding the Challenge

The curse of dimensionality refers to various phenom-
ena that arise when analyzing and organizing data in high-
dimensional spaces. These challenges include increased com-
putational complexity, data sparsity, and the difficulty of
visualizing and interpreting high-dimensional data. Traditional
dimensionality reduction techniques, such as Principal Com-
ponent Analysis (PCA), often fall short when dealing with
complex nonlinear structures inherent in high-dimensional
datasets.

B. Motivating Example 1: Uniform Sampling from an ℓ∞-Ball

Consider the unit-norm ball defined by the ℓ∞ norm in Rd.
Let [x]i denote the ith entry of x.

S = {x ∈ Rd : max
1≤i≤d

|[x]i| < 1}

Sampling from this space under a uniform distribution, each
coordinate is independent. What is the probability of sampling
a point such that |[x]i| < 0.99 for all 1 ≤ i ≤ d? Let X :
F → Rd be a random vector. The probability is given by:

P (||X||∞ < 0.99) = 0.99d

As d → ∞, P (||X||∞ < 0.99) → 0. This demonstrates how
high-dimensional spaces can behave counterintuitively, with
most points lying near the boundary of the space rather than
its interior.

C. Motivating Example 2: Principle Component Analysis

Principal Component Analysis (PCA) is a widely used
linear dimensionality reduction technique that transforms high-
dimensional data into a lower-dimensional space by projecting
it onto the directions of maximum variance. This method
is essential for reducing the complexity of datasets while
preserving as much information as possible.

Consider a clustering task with two clusters. Each cluster
has a sample mean and covariance matrix, denoted as (x̄1, Σ̄1)
and (x̄2, Σ̄2), respectively. The objective is to determine the
optimal projection direction that maximizes the separation
between these clusters.

In PCA, the data is centered by subtracting the mean and
then projected onto the eigenvectors of the covariance matrix,
which correspond to the principal components. These principal
components are the directions along which the variance of the
data is maximized. Mathematically, given a dataset X ∈ Rn×d

Fig. 1: ℓ∞ ball in R3

Fig. 2: 2D Gaussian mixture.

with n samples and d dimensions, the covariance matrix is
computed as:

Σ =
1

n
XTX

The eigenvectors of Σ represent the principal components, and
the eigenvalues indicate the amount of variance captured by
each principal component.

For a dataset with two clusters, the principal components
can be used to identify the direction that best separates the
clusters. This is particularly useful in classification tasks,
where projecting the data onto the principal components can
improve the performance of classifiers by reducing noise and
highlighting the most discriminative features.

Consider a subset of the MNIST handwritten digit dataset
representing the digit “3”. By computing the sample mean
x̄ and covariance matrix Σ̄, and taking the eigenvectors
associated with the largest eigenvalues, we can obtain the
best features for classification. The principal components
effectively capture the variations in the handwritten digits,



making it easier to distinguish between different samples of
the digit ”3”.

Σ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T

Eigenvectors: {v1,v2, . . . ,vd}
Principal Coordinates: XV

Fig. 3: Principal components for digit ”3”.

PCA is a useful technique to understand since the methods
described in this paper are very similar in logic.

III. MAIN ALGORITHMS

A. Laplacian Eigenmaps

Laplacian Eigenmaps is a method that uses the graph
Laplacian to perform dimensionality reduction. It involves
constructing a graph from the data points, where each point is
connected to its nearest neighbors, and assigning weights to
the edges based on a similarity function.

1) Graph Construction: Form an edge between xi and xj if
they are ”close” based on a chosen distance metric, either by
neighborhood relation or k-nearest neighbors. For Laplacian
Eigenmaps, the weight matrix W is defined as:

[W ]i,j =

exp

{
−||xi − xj ||2

ϵ

}
xi,xj connected

0 otherwise

with a selected parameters ϵ. Notice that if we send ϵ → ∞,
then the weights become simpler, assign 1 to connected points,
and 0 to disconnected points.

2) Spectral Decomposition: Assuming that the graph is
connected, construct a diagonal matrix D where [D]i,i =∑n

j=1Wj,i. This matrix captures the degree of each data point.
Make the graph Laplacian L = D−W . Solve the generalized
eigenvalue problem:

Lψ = λDψ

Select the eigenvectors corresponding to the smallest nonzero
eigenvalues to form the lower-dimensional embedding.

xi 7→ [ψ1(i), . . . , ψm(i)]

B. Diffusion Maps

Diffusion Maps are based on the construction of a Markov
chain on the dataset, where the transition probabilities reflect
the local geometry of the data. The steps to construct a
diffusion map is very similar to that of Laplacian eigenmaps,
but the intuition behind the diffusion map is a random walk
on the data.

1) Graph Construction: The transition probability matrix
P is constructed as:

[P ]i,j =
K(xi,xj)∑
z∈X K(xi, z)

where K(xi,xj) is a Gaussian kernel.
2) Spectral Decomposition: Solve the eigenvalue problem

for the transition matrix P :

Pψk = λkψk

The eigenvectors ψk with non-zerp eigenvalues λk provide
the diffusion coordinates. The diffusion distance between two
points x and y at time t is:

dt(x,y) =

∑
l≥1

λ2tl (ψl(x)− ψl(y))
2

1/2

It can be seen that both of these methods are very similar
to that of PCA. In all of the methods, we perform spectral
analysis on the matrix that encodes the similarity between
features of the data.

IV. THEORETICAL GUARANTEES

In this section, we will go over one of the fundamental
proofs that encapsulate the idea behind diffusion maps.

A. Spectral Analysis of the Markov Chain

The diffusion distance is a metric that captures the intrinsic
geometry of the data by measuring the connectivity between
points via a diffusion process. This section provides a detailed
proof of how the diffusion distance can be estimated using the
eigenvectors of the transition matrix constructed from the data.
Diffusion distance is defined to be as follows:

dt(x, y) := ||pt(x, .)− pt(y, .)||2L2(X,dµ/π)

=

∫
X

(pt(x, u)− pt(y, u))
2 dµ(u)

π(u)



At first glance, this formulation may be daunting, but the
integral term is just a summation over all of the datapoints
since we are working in a finite measure space. Essentially,
the diffusion distance characterized by parameter t is a metric
that describes the probability of two datapoints “meeting” at
another datapoint after traversing t steps of the random walk.

First of all, it is common to ask why it is important to
examine the eigenvectors of the probability matrix. Let P be
a transition probability matrix for a Markov chain

Pi,j = p(xi,xj)

P t
i,j is the probability of transition from the i to j in t steps.

Since we want to examine the probabilities of a Markov chain
after t steps, analyzing entries of repeated matrix multiplica-
tion requires the analysis of eigenvalues and eigenvectors.

B. Definition of the Diffusion Distance

Given a dataset X = {xi}Mi=1, we construct a weighted
graph where each node represents a data point and the edges
are weighted by a similarity measure k(xi, xj). The transition
matrix P is derived from these weights and represents the
probabilities of transitioning between nodes in a random walk.

The diffusion distance between two points xi and xj at time
t can be seen as a simpler formulation:

dt(xi, xj) =

( ∑
xk∈X

(pt(xi, xk)− pt(xj , xk))
2
π(xk)

) 1
2

where pt(xi, xk) is the probability of transitioning from xi to
xk in t steps, and ϕ0 is the stationary distribution.

Before diving into the proof, it is first important to change
the kernel to something that is more well-behaved. Define a
new kernel

a(xi,xj) =
∑
l≥1

λlϕl(xi)ϕl(xj)

and with this kernel arises an operator A. This operator will
act on the entire metric space and restructure it in a sense. This
can be directly connected to the shifted Dirac delta function
as a kernel in signal processing or convolution kernels in
convolutional neural networks. Without loss of generality, we
often define kernel operators to be in the form∫

X

f(x)g(x, y)dy

However, it is realized that our operator is symmetric and
compact i.e. it maps finite points to finite points. This means
that we can perform spectral analysis on the operator and re-
formulate the diffusion distance in terms of the eigenfunctions.
Spectral analysis on A is equivalent to spectral analysis on the
probability matrix:√

π(xi)√
π(xj)

p(xi,xj) =
∑
l≥1

λlϕl(xi)ϕl(xj)

p(xi,xj) =
∑
l≥1

λl
ϕl(xi)√
π(xi)

(√
π(xj)ϕl(xj)

)

pt(xi,xj) =
∑
l≥1

λtl
ϕl(xi)√
π(xi)

(√
π(xj)ϕl(xj)

)
With this redefinition, we can alter the form of Dt(x, y)

=

∫
X

(pt(x, u)− pt(y, u))
2 dµ(u)

π(u)

=

∫
X

(∑
l≥1

λtl
ϕl(x)√
π(x)

(√
π(u)ϕl(u)

)
−
∑
l≥1

λtl
ϕl(y)√
π(y)

(√
π(u)ϕl(u)

))2 dµ(u)
π(u)

=

∫
X

(∑
l≥1

λ2tl

( ϕl(x)√
π(x)

− ϕl(y)√
π(y)

)2(√
π(u)ϕl(u)

)2 dµ(u)
π(u)

=
∑
l≥1

λ2tl

( ϕl(x)√
π(x)

− ϕl(y)√
π(y)

)2 ∫
X

(
ϕl(u)

)2
dµ(u)

=
(∑

l≥1

λ2tl

(
ψl(x)− ψl(y)

)2
By the construction of ϕl, it is left as an exercise to the
viewer to show that ψ(x) = ϕ(x)√

π(x)
. We can see that ϕl

are eigenfunctions that send the datapoints to the diffusion
coordinate space.

C. Approximation Using the Leading Eigenvectors

In practice, the eigenvalues decay rapidly, and the diffusion
distance can be approximated using only the first d dominant
eigenvalues and their corresponding eigenvectors. Thus, we
have:

dt(xi, xj) ≈

(
d∑

ℓ=1

λ2tℓ (ψℓ(xi)− ψℓ(xj))
2

) 1
2

This approximation effectively captures the significant struc-
ture of the data, as the leading eigenvectors correspond to the
directions of maximum variance in the diffusion process.

The proof shows that the diffusion distance, which measures
the intrinsic connectivity of the data, can be efficiently esti-
mated using the eigenvectors and eigenvalues of the transition
matrix. By focusing on the leading eigenvectors, we can reduce
the computational complexity while preserving the essential
geometric properties of the data. This approach is particularly
useful in manifold learning and data representation, where
understanding the low-dimensional structure is crucial.

V. NUMERICAL EXPERIMENTS

A. Laplacian Eigenmaps on the Swiss Roll Dataset

We apply Laplacian Eigenmaps to a Swiss roll dataset with
10,000 points (Fig 4). Using a Gaussian similarity kernel
applied to the nearest 200 points, we can effectively recover
the 2D manifold structure of the dataset (Fig 5).



Fig. 4: The Swiss roll dataset

Fig. 5: Diffusion embedding

B. Diffusion Maps for Orientation Learning

For a dataset of 1,000 images of horses with varying orien-
tations (Fig. 6), we use Diffusion Maps with a Gaussian kernel
to construct the transition matrix. The resulting diffusion
coordinates reveal the underlying orientation of the images
(Fig. 7). Fig. 8 shows the distance of sample sample from the
0◦ orientation data point. The sine curve showing the change
in diffusion distance shows that the embedding is effective.

However, it is important to note that these low dimensional
embeddings are computational inefficient to compute. Its uses
in real-time learning would not be adequate, but applications
in learning for larger pre-made datasets would be useful.

Fig. 6: The horse orientation dataset

Fig. 7: Diffusion embedding (left bar is the orientation of horse
in radians)

VI. APPLICATIONS TO DEEP LEARNING

Diffusion maps have a considerable application towards
deep learning and Stochastic Gradient Descent (SGD). SGD is
widely recognized for its computational efficiency in training
deep neural networks, yet the reasons behind its superior per-
formance compared to full batch gradient descent are not fully
understood. Empirical observations indicate that the Hessian
of the loss functions in over-parameterized networks often has
many near-zero eigenvalues, suggesting that the optimization
process effectively operates within a lower-dimensional sub-
space defined by the significant eigenvalues of the Hessian.
This indicates that despite the high-dimensional parameter
space, SGD dynamics are constrained to a lower-dimensional
manifold.

Diffusion maps can help data scientists delve deeper into



Fig. 8: Diffusion distance of sample points from orientation
0◦ data point

the geometry of the optimization landscape traced by SGD,
this paper employs and facilitate the discovery of local low-
dimensional representations of high-dimensional data by ana-
lyzing the data generated during the optimization process. This
approach not only helps in understanding the SGD dynamics
but also in identifying the slow variables and meta-stable states
within the optimization landscape.

The analysis includes constructing a graph using the data
points from SGD paths, with weights derived from diffusion
kernels, and then performing spectral decomposition to obtain
the principal components that capture the underlying geometry.

VII. PROOF SKETCHES

A. Proof of Covariance Approximation (Equation 2.6)

First, note that the stochastic gradient ∇f̃e(x) is an unbiased
estimator of the full gradient ∇f(x):

E[∇f̃e(x)] = E

[
1

n

∑
i∈Ω

∇fi(x)

]
= ∇f(x)

where Ω ⊂ {1, . . . , N} is a random subset of data indices and
n is the batch size.

The covariance of the stochastic gradient is given by:

C(x) = E[∇f̃e(x)∇f̃e(x)T ]−∇f(x)∇f(x)T

Expanding the expectation term: E
[
∇f̃e(x)∇f̃e(x)T

]
is

equal to

E

( 1

n

∑
i∈Ω

∇fi(x)

)(
1

n

∑
i∈Ω

∇fi(x)

)T


Since Ω is randomly sampled:

E
[
∇f̃e(x)∇f̃e(x)T

]
=

1

n2

∑
i,j

E[∇fi(x)∇fj(x)T δij ] (1)

Considering δij :

E[δij ] =

{
n
N if i = j
n(n−1)
N(N−1) if i ̸= j

Therefore (1) becomes:

=
1

Nn

∑
i

∇fi(x)∇fi(x)T +
n− 1

n(N − 1)

∑
i̸=j

∇fi(x)∇fj(x)T

And the covariance estimate becomes evident.

=
N − n

n(N − 1)

(
1

N

N∑
i=1

∇fi(x)∇fi(x)T −∇f(x)∇f(x)T
)

This provides the desired covariance approximation used in
the Mahalanobis distance for the diffusion maps.

VIII. CONCLUSION

Dimensionality reduction techniques are indispensable tools
in the realm of data science and machine learning, facilitating
the analysis and visualization of high-dimensional datasets.
This report delved into the spectral methods of Laplacian
Eigenmaps and Diffusion Maps, highlighting their capabilities
in uncovering the intrinsic geometric structures of data. By
leveraging the spectral properties of graphs, these methods
efficiently preserve local and global data relationships, offering
significant advantages over traditional linear techniques.

Laplacian Eigenmaps employ the graph Laplacian to project
high-dimensional data into lower-dimensional spaces while
maintaining neighborhood relationships, making it particularly
effective for tasks where local structure is paramount. Diffu-
sion Maps extend this approach by incorporating a diffusion
process that captures the connectivity and manifold structure
of the data, thus providing a robust framework for manifold
learning and data representation. Through theoretical analysis
and empirical demonstrations, this report illustrated how these
spectral methods can be integrated into deep learning frame-
works to enhance feature extraction, reduce computational
complexity, and improve model performance.

In conclusion, the study of spectral methods for dimension-
ality reduction underscores their critical role in modern data
science. As datasets continue to grow in size and complexity,
the ability to simplify and interpret high-dimensional data
remains a vital challenge. Spectral methods such as Laplacian
Eigenmaps and Diffusion Maps offer powerful solutions, re-
vealing the underlying structures that govern data distributions.
The insights gained from this report not only advance our
understanding of these techniques but also pave the way for
their broader application in various domains, including image
recognition, clustering, and beyond. As research progresses,
further exploration of these methods will undoubtedly con-
tribute to the ongoing evolution of data analysis and machine
learning methodologies.
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