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Abstract—This project presents a novel approach to estimate
the orientation of an Inertial Measurement Unit (IMU) using
accelerometer data, optimizing it with motion models to enhance
accuracy. Leveraging a projected gradient descent algorithms, we
mitigate drift and noise, refining the estimation through motion
dynamics optimization. Subsequently, the optimized orientations
are utilized to stitch together panoramic images captured by
a camera attached to the IMU, ensuring seamless transitions
between frames. The methodology offers real-time orientation
estimation, robust accuracy, and versatile applications in aug-
mented reality, robotics, and navigation systems. Experimental
validation demonstrates the effectiveness of the proposed ap-
proach in dynamic systems.

Index Terms—Optimization, robotics, orientation tracking,
sensor fusion, quaternions, projected gradient descent

I. INTRODUCTION

In the realm of robotics, the ability to accurately track the
orientation of a moving body is of paramount importance
for various applications ranging from navigation to object
manipulation. In this project, we delve into the fundamental
task of orientation tracking using data acquired from an iner-
tial measurement unit (IMU) and ground-truth measurements
provided by a VICON motion capture system.

The project is divided into two main components: ori-
entation tracking and panoramic image construction. In the
first part, we focus on developing algorithms to estimate
the orientation trajectory of the rotating body using IMU
measurements. This involves:

• Calibrating the IMU sensors
• Processing the IMU data to a desired format
• Producing initial predictions via the angular velocity

motion model.
• Formulating an optimization problem to reconcile IMU

measurements with the expected motion dynamics
• Implementing a projected gradient descent algorithm to

optimize quaternion trajectories.

In the second part of the project, we extend our exploration
to construct panoramic images by stitching together camera
images captured by the rotating body. This component not only
demonstrates the practical application of orientation tracking
in real-world scenarios but also highlights the importance of
sensor fusion in robotics applications. Through this project,
we aim to gain insights into the challenges and methodologies
involved in sensing and estimation tasks in robotics.

II. NOTATIONS AND PRELIMINARIES

Let the orientation of our agent begin with the camera facing
in the positive x-direction, and the positive y-direction and
positive z-direction are placed so that x⃗ × y⃗ = z⃗. The euler
angles of a rotation are roll, pitch, and yaw, which are the
counterclockwise rotation of the x, y, and z axis respectively
with respect to the right-hand rule.

In this project, we will be working in the space of 4
dimensional vectors known as quaternions, which are in the
form q = a + bi + cj + dk, where a, b, c, d ∈ R. Throughout
this project, quaternions will also be present in a row vector
form [qs,qv] where qs ∈ R denotes the real number in the
quaternion while the components of qv ∈ R3 denotes the
scalar multiples of i, j,k respectively.

Addition and subtraction in the space will be the
component-wise addition and subtraction. Let .◦. : H×H → H
define the usual multiplication in this space, and under this
multiplication, the space produces a unique definition expo-
nentiation. Define ∥.∥2 : H → R as the norm of any quaternion
such that

∥q∥2 :=
√
a2 + b2 + c2 + d2

Let H∗ := {q ∈ H : ∥q∥2 = 1} be the unit norm quaternion
space. We will be using H∗ to represent the orientation of
the IMU data due do its closed-ness under multiplication,
computational simplicity, convenient mapping from different
orientations. Utilizing standard Euler angles can lead to a
problem known as gimbal lock, which allows infinitely many
combination of rolls, pitches, and yaws.

We will begin working with time t = 0, 1, . . . , T , where T
denotes the index of the last IMU reading.

Let qi ∈ H∗ denote the orientation of the IMU at the ith
time step. τi, i ∈ N is the change in time in seconds from time
step i− 1 to i. ωi ∈ R3 is the angular velocity in radians per
second measured by the IMU at time step i. at ∈ R3 is the
acceleration vector at time step t.

III. PROBLEM FORMULATION

With initial orientation quaternion q0 = 1, we can solve for
qt+1 for any given qt by k : H∗×R3 → H∗ under its defined
multiplication and exponentiation:

qt+1 = b(qt,
τt
2
ωt) := τtqt ◦ exp([0,

τt
2
ωt])

Which is integrates the angular velocity over time, then applies
the instantaneous rotation to the current orientation.



In addition to the kinematics model, we want to apply the
accelerometer data in order to make sure that the rotation
measurements preserve the intrinsic measure of gravity. With
initial gravity quaternion a0 = [0, [0, 0,−1]T ], we will calcu-
late the intrinsic gravity under the angular kinematics model
at ith time step by applying an algebraic conjugation on the
initial acceleration by qt i.e. a(qt) := q−1

t ◦ a0 ◦ qt.
Now we have a two metrics: one of which measures how

well the orientation obeys the angular kinematics and the
other which measures how well the orientations estimate the
gravity. The goal is to rely on the accelerometer data because
it is the best predictor of orientation. We can compensate
some precision in the kinematics model in order to perfect
the prediction of intrinsic gravity. We can formulate two
different cost functions for different priorities: convenience,
and robustness.

Our second metric is easy to model. We want to make sure
the gravity under the rotations matches with the gravity read
by the accelerometer. Therefore, we want to minimize the
following cost function c2 : HT

∗ → R, a function that maps
from T unit quaternions to a real number defined as follows:

c2(q1:T ) :=

T∑
i=1

∥ai − a(qi)∥
2
2

To formulate the the cost for the kinematics model we can
either take a naı̈ve approach or a more refined approach. For
the naı̈ve interpretation of quaternions, we can just find the
Euclidean distance between the given qi+1 and b(qi,

τi
2 ωi).

Define c1 : HT
∗ → R.

c1(q1:T ) :=

T−1∑
i=1

∥∥∥qi+1 − b(qi,
τi
2
ωi)

∥∥∥2
2

Alternatively, we can consider the fact that the additive in-
verse of any quaternion will also represent the same rotation.
Therefore, we do not want to penalize such values, which c1
indeed does. Define c′1 : HT

∗ → R.

c′1(q1:T ) :=

T−1∑
i=1

∣∣∣∣∣∥∥∥qi+1 − b(qi,
τi
2
ωi)

∥∥∥2
2

+
∥∥∥qi+1 + b(qi,

τi
2
ωi)

∥∥∥2
2
− 2

∣∣∣∣∣
This formulation comes from the triangle inequality where
we are taking summing the distances of qi+1 to b(qi,

τi
2 ωi)

and b(qi,
τi
2 ωi) to qi+1. We want this to be as close to the

distance from qi+1 to −qi+1, which is just 2. This will allow
the quaternion to freely choose whether to be closer to either
representation of the same orientation.

Construct two cost function f, f ′ : HT
∗ → R formulated as

follows:
f(q1:T ) := c1(q1:T ) + c2(q1:T )

f ′(q1:T ) := c′1(q1:T ) + c2(q1:T )

IV. TECHNICAL APPROACH

Before any computation, it is crucial to preprocess the
IMU data because the incoming data are integer values that
corresponding to the voltage readings on the accelerometer and
gyroscope. During the time where the IMU is static, we must
find the resting state values to calibrate the IMU. Configure the
resting state values to 0 (other than the z-axis acceleration),
we can represent the initial state. Lastly, we need to scale the
voltage reading so that the deviations represent the angular
velocity in radians

s and acceleration in m
s2 . Such scaling factors

can be found in the device documentation.
Our solution is initialized from the kinematics motion model

from the angular velocity reading of the IMU, as defined in b.
Given the two cost functions f and f ′, we will apply gradient
descent with 15 iterations and and a step ratio of 0.2 for stable
convergence. Through Python, we will compute and model the
quaternion orientations and optimize the orientations via Jax,
a high performance array computing package that will find
the gradient for the cost function. After taking a gradient step
scaled by the step ratio, we will normalize each quaternion
since H∗ is not closed under addition.

Next, using the optimized orientations, we will stitch to-
gether a panorama by taking the following steps:

• Determine pixel-to-degree ratio
• Extract Euler angles from quaternion for time t with

image.
• Rotate image based on roll to reverse camera rotation
• For each pixel in the image, place coordinate onto sphere

with radius 1 using pitch and yaw, where to positive x
direction is considered to be (0,0).

• Project pixel coordinate on sphere to cylinder of height
1000 pixels and diameter 1000 pixels

• Color the coordinate and some of its surrounding pixels
with the corresponding pixel value. This is because we are
projecting onto a larger space, so the projection mapping
may leave empty pixels between two adjacent pixel in a
given image.

The longitudinal translation and projection of a pixel directly
stems from the yaw of the orientation, which makes de-
termining the x coordinate of the pixel very easy. For y,
the projection becomes obvious after some inspection. Due

Fig. 1: Using the pitch ϕ in sphereical coordinates to project
pixel to the enclosing cylinder

to the sheer volume of pictures, not all will be processed
for utilization, but still take at least 150 frames to ensure



smooth transition between frames. For this particular project,
the pictures are assumed to have height of 40 degrees and
width of 60 degrees on a sphere.

V. RESULTS

The proposed solution performed well under the datasets
from Professor Nikolay Atanasov with runtimes for the opti-
mization to take under 5 seconds.

Both cost functions converged at around the same rate.
Additionally, they did not have significant difference when
predicting the gravity vector and generating the panorama.
It seems that the second cost function does not provide a
noticable advantage.

The following figures will only display the
• Ground truth roll, pitch, and yaw values from VICON

data (if given)
• Initial and optimized roll, pitch, and yaw estimates
• Initial and optimized acceleration vector estimates
• Stitched panoramas generated under ground truth VICON

data (if given) and panorama generated under orientation
estimates

for the datasets with camera data (datasets 1,2,8,9,10,11). The
orientation estimates for datasets 10 and 11 will not have a
ground truth orientation plot since it is not given.

Despite a deviation from a more reasonable cost function
by taking the quaternion log to see if the rotation for qt+1 per-
fectly reverses the orientation b(qt,

τt
2 ωt), both cost functions

seemed to converge to a good estimate.
Fig 1 and Fig 2 display the orientation and the gravity

vector estimations for dataset 1 and 2. Fig 3 and Fig 4
are the panorama stitches generated from the corresponding
orientations.

Fig. 2: Orientation (left) and gravity (right) predictions from
ground truth (blue), inital prediction (orange), and optimized
by f, f ′ (green and red, respectively)

The plot highlight the fact that the quaternion trajectories
were indeed altered to fit minimize the gravity error. The
green and red plots are closer to the ground truth than the

Fig. 3: Orientation (left) and gravity (right) predictions from
ground truth (blue), inital prediction (orange), and optimized
by f, f ′ (green and red, respectively)

orange plot. It can be seen that there are more deviations in
the orientation plots than the gravity plots. This is most likely
because c2 is orders of magnitudes larger than the first cost
term.

Another observation is that the green and red lines are iden-
tical almost everywhere. Since the cost functions’ landscape
are most likely to be similar.

The Fig. 4 and Fig. 5 are the panoramas stitched together
given the orientations for dataset 1 and 2, respectively. A
common occurrence across all of the panorama stitches is the
center of the panorama being a little offset. Additionally, this
often occurs when the camera leaves the initial direction it
was facing and then returns to the same orientation.

Fig. 4: (from top to bottom) Panorama stitches from VICON
(ground truth) data, f -optimized, and f ′-optimized orienta-
tions.



Fig. 5: (from top to bottom) Panorama stitches from VICON
(ground truth) data, f -optimized, and f ′-optimized orienta-
tions.

Fig. 6, 7, 8, 9 are the plots and panoramas for dataset
8 and 9. The quaternion initalization predicts orientation
decently well but doesn’t agree well with the acceleration.
The optimizer performed well, but failed to optimize the last
few times steps for the yaw. This caused the panorama to
have a significant offset for the center, due to the overlapping
feature of the panorama generator. This is inevitable since
the error accumulates over time and motion, so uncertainty
will unequivocally grow. However, disregarding the last few
pictures that displace the center, we can see a very good
reconstruction of the surroundings. Adding weight onto the
gravity estimation error did not lead to better results. The cause
is most likely to be the corresponding peaks of the acceleration
vector which the cost function is try to optimize upon.

Fig. 6: Orientation (left) and gravity (right) predictions from
ground truth (blue), inital prediction (orange), and optimized
by f, f ′ (green and red, respectively)

Fig. 7: Orientation (left) and gravity (right) predictions from
ground truth (blue), inital prediction (orange), and optimized
by f, f ′ (green and red, respectively)

Fig. 8: (from top to bottom) Panorama stitches from VICON
(ground truth) data, f -optimized, and f ′-optimized orienta-
tions.

For the testing datasets, the only form of validation was the
accelerometer readings and the panorama construction. Fig.
9, 10 show the performance on dataset 10 and Fig 11, 12
for dataset 11. The stitches of the panorama seem to align
pretty well. However, dataset 11 faced a more scattered photos
because the vast variations in pitch. There were only 160
pictures, so possibility of interpolation and smoother transition
was impossible.
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Fig. 9: (from top to bottom) Panorama stitches from VICON
(ground truth) data, f -optimized, and f ′-optimized orienta-
tions.

Fig. 10: Orientation (left) and gravity (right) predictions from
inital prediction (blue), and optimized by f, f ′ (orange and
green, respectively)

Fig. 11: (from top to bottom) Panorama stitches from f -
optimized and f ′-optimized orientations.

Fig. 12: Orientation (left) and gravity (right) predictions from
inital prediction (blue), and optimized by f, f ′ (orange and
green, respectively)

Fig. 13: (from top to bottom) Panorama stitches from f -
optimized and f ′-optimized orientations.


