
LiDAR-Based SLAM with Factor Graph
Optimization

Jay Paek
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, California

jpaek@ucsd.edu

Abstract—This project addresses the challenges of Simultane-
ous Localization and Mapping (SLAM) and texture mapping in
robotics. Using a differential-drive robot equipped with encoders,
an Inertial Measurement Unit (IMU), a 2-D LiDAR scanner, and
an RGBD camera, we aim to accurately estimate the robot’s
pose and construct detailed maps of the environment while also
generating texture maps of the floor. Our approach involves
integrating sensor measurements and control inputs to predict
the robot’s motion, refining pose estimates through LiDAR
scan matching, and enhancing trajectory estimation via pose
graph optimization with loop closure constraints. Additionally, we
utilize RGBD images to generate textured representations of the
floor, providing richer environmental understanding. Through
these methods, we enable autonomous navigation and enhance
perception capabilities in unknown environments, paving the way
for applications such as autonomous exploration, surveillance,
and navigation in indoor settings.

Index Terms—Optimization, robotics, sensor fusion, SLAM,
factor graph optimization, occupancy mapping, pose estimation.

I. INTRODUCTION

Autonomous navigation in unknown environments is a fun-
damental challenge in robotics, with applications ranging from
autonomous vehicles to mobile robots in indoor environments.
Simultaneous Localization and Mapping (SLAM) is a key
technique that addresses this challenge by enabling robots to
simultaneously localize themselves while building a map of
their surroundings. Additionally, generating texture maps of
the environment enhances the robot’s perception capabilities,
facilitating tasks such as object recognition and navigation.

In this project, we focus on implementing SLAM and
texture mapping using a differential-drive robot equipped with
various sensors, including encoders, an Inertial Measurement
Unit (IMU), a 2-D LiDAR scanner, and an RGBD camera. Our
objective is to leverage data from these sensors to accurately
estimate the robot’s pose and construct a detailed map of the
environment. Furthermore, we aim to generate a texture map of
the floor using RGBD images captured by the robot’s camera.

Our approach involves:

• Integrating sensor measurements and control inputs to
estimate the robot’s trajectory via Euler’s method

• Perform LiDAR scan matching to refine pose estimates
via ICP matching with the Kabsch algorithm

• Employ pose graph optimization with loop closure con-
straints to enhance trajectory estimation using George
Tech Smoothing and Mapping (GTSAM) library

• Create an occupancy map using optimized trajectories
and LiDAR points using Bresenham ray 2D ray tracing
algorithm incorporating log-odd probabilities of occu-
pancy in the grid cells.

• Project RGBD images to the world frame with camera
projection matrix and depth values to generate a texture
map of the floor, providing a richer representation of the
environment

II. PROBLEM FORMULATION

Our goal is to estimate the robot’s trajectory and the map
of the environment given sensor measurements and control
inputs. We will use the odometry and LiDAR measurements
to localize the robot and build a 2-D occupancy grid map of
the environment. Then we will use the RGBD images to assign
colors to the 2-D map of the floor.

Let x1:T ∈ R3 be the positions of the robot at discrete time
steps, where the first two entries are the 2D positions of the
robot while the last entry is the direction it is facing in radians
i.e.

[
xt yt θt

]
. x0 will be

[
0 0 0

]T
. Let z1:T ∈ R1081

be the LiDAR readings at the discrete time steps.
Before any usage of probabilistic models, the initial predic-

tions of the robot states need to be optimized. We are given
the following data:

• Motor encoder data that measures how much rotation
the front-left, front-right, back-left, back-right wheels
underwent, along with the time stamps of their readings.
Positive ticks represent forward motion, and negative
ticks represent backwards motion, where there are 360
ticks per revolution.

• Accelerometer and gyroscope data data given by the
IMU. No calibration is needed since data is given in
gravity units and radians per second repsectivelty. Since
the robot is moving in two dimensions, only the yaw rate
is needed. Due to the differential drive kinematis of the
robots, the acceleration will not be used.

• Horizontal LiDAR readings from a Hokuyo UTM-30LX
with 270 degree field of view: from -135 degrees to 135
degrees with a valid range of 0.1 to 20 meters.



• RGBD images from a Kinect. The projection matrix of
the depth camera are:

K =

585.05 0 242.94
0 585.05 315.84
0 0 1


All of the data are associated with individual UNIX time

stamps in seconds. It is crucial to note that none of the data
are synchronized, so it is important to formulate an algorithm
to make sure the data are associated with their respective
measurements.

The physical configurations are given in Fig. 1

Fig. 1: Robot’s physical configurations

Using the noisy IMU and encoder data, we will create an
initial estimate for x1:T . Then with the given x1:T , we will use
xt and xt+1 to transform the closest time LiDAR readings to
create two point clouds in R2. Then we will perform iterative
closest point (ICP) matching between the two point clouds to
improve the estimations for x1:T . Using the optimized values,
we will use the LiDAR scans once more in order to create
an occupancy grid map. As a final touch, we will use the
Georgia Tech Smooth and Library in order to perform factor
graph optimization x1:T u using the improved x1:T and LiDAR
observations z1:T .

For texture mapping, the goal is to generate a 2-D color
map of the floor texture using RGBD images captured by the
robot’s camera. This involves associating RGB values with
depth information to create a textured representation of the
environment. Using the projection matrix of the depth camera,
we will identify which points of each photo at time step t
represent the floor. Then these selected pixels will be used to
color the grid map accordingly.

III. TECHNICAL APPROACH

A. Odometry Estimation

In order to synchronize between two data sets, we first
determine which dataset has more points. Without loss of
generality, let dataset 1 and dataset 2 have timestamps ti, t

′
j

respectively. Additionally let dataset 1 have T1, T2 total points
respectively.

Algorithm 1 Data synchronization

i← 1, j ← 1
for i = 1, . . . , T1 do

if ti > t′j then
Associate data ti and t′j , j++

end if
end for=0

We begin by utilizing encoder and IMU measurements to
predict the robot’s motion. The differential-drive motion model
describes the robot’s motion based on linear and angular
velocities. Given the encoder counts and IMU readings, we
employ this model to predict the robot’s trajectory, assum-
ing a constant linear velocity and angular velocity between
consecutive time steps. Given FR,FL,BR,BL, the front-
right, front-left, back-right, back-left motor encoder values,
at any time step t, the we can define the approximate linear
translation of the robot

dt := 0.022
FL+ FR+BL+BR

4

This equation is derived from the wheel diameter and the fact
that each tick of the encoder corresponds to a π

180 radian turn
of the wheel. Then the encoder values are averaged for the
right wheels and the left wheels, then with the averaged wheel
turns on either side, they are multiplied by the distance traveled
by one tick.

With vt and ωt, which is already given by the IMU, we find
an iterative method to approximate the poses of the robot over
time. Initially, the differential drive model admits the following
equation

xt+1 = xt + τt
[
vt cos(θt) vt sin(θt) ωt

]T
where τt is the time stamp increment between t and t − 1.
However, realizing that τtvt is just linear displacement, we
the following expression.

= xt +
[
dt cos(θt) dt sin(θt) τtωt

]T
B. LiDAR Scan Matching

Next, we refine the initial odometry estimates using LiDAR
scan matching. The LiDAR sensor provides distance measure-
ments to obstacles in the environment, allowing us to generate
2-D scans of the surroundings. We employ the Iterative Closest
Point (ICP) algorithm to align consecutive LiDAR scans and
estimate the relative pose change between them.

ICP iteratively aligns two point clouds by minimizing the
distance between corresponding points. By comparing consec-
utive LiDAR scans, we can estimate the transformation that
best aligns them, thereby improving the accuracy of our pose
estimates. Prior to any rotation adjustments, we will translate
the the source points by µt − µs, where µt, µs denote the
centroid of the point clouds respectively. Let si, ti be the
source points and closest target point to si, respectively.

There will be two steps for each iteration. First, we will
use scipy’s KDTree to find the nearest neighbor to each of the



source points to create a point association between the source
points and the target points. Then, to numerically compute
such transformations for each iteration, we will use the Kab-
sch Algorithm. This algorithm is suitable for such situation
because the current optimization problem is as follows:

min
R∈SO(3)

T∑
n=1

∥(ti − µt)−R(si − µs)∥22

However, with some rearrangement, the optimization problem
admits the following form

min
R∈SO(3)

QTR

Where Q =
∑T

n=1(tn−µt)(si−µs)
T . The Kabsch Algorithm

offers a solution for R given the the svd of Q. After finding
Q = UΣV T , the optimal R is the following

U

1 0 0

0
. . . 0

0 0 det(UV T )

V T

Then the source points will be rotated appropriately, and the
transformed source points will undergo another iteration of
closest point matching and the Kabsch algorithm. However,
due to numerical inaccuracies of a computer, too many itera-
tions could deform R out of SO(3). Hence, the columns of
R will be normalized at each step. All ICP matching methods
are are iterated over 20 iterations.

In summary, this is the algorithm, where R = I intially:

Algorithm 2 ICP

for i = 1, . . . , 20 do
match closest tn → sn using KDTree
UΣV T ← svd(

∑T
n=1(tn − µt)(sn − µs)

T )

R← RU

1 0 0

0
. . . 0

0 0 det(UV T )

V T

Normalize columns of R
end for=0

Then we construct T =

[
R µt − µs

0 1

]
, and return it.

C. Factor Graph Optimization

To further enhance the accuracy of our trajectory estima-
tion, we employ pose graph optimization with loop closure
constraints. Pose graph optimization involves constructing a
graph where nodes represent robot poses at different time
steps, and edges represent relative pose measurements between
these poses obtained from sensor data.

We use the GTSAM library to formulate and solve the pose
graph optimization problem. By incorporating loop closure
constraints into the graph, we refine the trajectory estimation
and correct cumulative errors in the robot’s path. We configure
the factor graph with 0.1I covariance for all observations and
positions. Each node will represent a position, and the edges

between node t and t′ is the transformation from t and t′ in
the same form as x.

First, we will initialize the graph with the LiDAR optimized
model, by inputting the transformations for each t to t + 1.
Next, we will compute the transformation from t to t+5, and
then add another edge from the tth node to the t+ 5th node,
for every fifth node. This adds a loop closure, and ensures
that there is not too much discrepancy between the LiDAR
measurements up from t to t+ 5 and t directly to t+ 5.

Finally, we will initialize the graph with the LiDAR opti-
mized model, then use the Gauss-Newton optimizer to achieve
convergence for the following optimization problem roughly
in this form, where E is the edge set.

x∗
1:T := argmin

x1:T∈Rn

∑
(i,j)∈E

∥xj −j Tixi∥

D. Occupancy Grid

To create the initial map, given position coordinate (xt, yt)
and orientation θt, we need to compute the lidar points in the
world frame. Create a vector ϕ ∈ R1081 such that the ith entry
denotes the direction of the ith entry of LiDAR measurement,
which should be −2.35619449+(i−1)0.00436332. Let ⊕ and
⊗ denote the element wise addition and multiplication of the
smaller element to each row of larger element, respectively.
Let l ∈ R1081 be the LiDAR distance reading in meters, then
LiDAR readings in the world coordinates, l′, are:[

xt yt
]
⊕ (l ⊗

[
cos(ϕ+ θt) sin(ϕ+ θt)

]
)

To build the occupancy grid, we consider the LiDAR rays
extending from pose xt at every time step t. In grid cells
where there is a LiDAR reading, we increase the probability
that some object is there blocking the view. In grid cells where
the ray passes through, the log odds of occupancy is decreased.
For any cells where the robot passes through, the occupancy is
immediately forced to 0. We would use the given bresenham
ray tracing algorithm in order to determine which cells to
increment or decrement the odds of occupancy in each cell.

E. Texture Mapping

Finally, we utilize RGBD images captured by the robot’s
camera to generate a texture map of the floor. RGBD images
provide both color and depth information, allowing us to
associate RGB values with depth measurements and project
colored points onto the floor surface.

We employ geometric transformations to project points from
the camera frame to the world frame, ensuring accurate align-
ment with the robot’s trajectory. By combining RGB values
with depth information, we create a textured representation of
the floor, enhancing the robot’s perception capabilities.

Projection of a point from the world frame to the image
frame is simple. The pixel coordinates x, y given the observa-
tion coordinates X,Y, Z ∈ R in the image frame isxy

1

 =
1

Z
K

XY
Z





Uusually, the depth coordinate is lost during projection, but
given the depth values of each pixel, it is possible to solve the
inverse problem and retrace the pixels in the world coordinates.

First, we must find the depth from the disparity image. Let
d be the disparity for pixel coordinate x, y

Z =
1.03

0.00304d+ 3.31

Now given the depth, we just solve for the image frame
coordinates, since K is invertible.XY

Z

 = ZK−1

xy
1


It is crucial to convert the coordinates back to the world frame,
which is just switching the entries. Then translate the points
given that the KiNect is tilted downwards by 18 degrees and
translated from the center of the robot. Lastly, pick out the
points with y coordinates less than 0.15 in the world frame.
Associate these floor images with the positions using the time
stamps. Paste these points to the map given the position.

IV. RESULTS FOR ICP

The following photos are the ICP algorithm tested on points
clouds of a bottle and drill. The blue represents the source
point cloud, and the red represents the target point cloud. Our
goal is to find the transformation matrix T ∈ R4×4 which
transforms the source point cloud to the target.

The matchings are done fairly well given the fact that the
target point clouds are 2.5D. Since the mean of the point
clouds are offset due to skewness of the points, it very hard
to match perfectly when using a standard algorithm. However,
the algorithm performed well adjust two of the three axes of
rotation.

With more time, using the distances to the closest match
as weights and analyzing the surrounding curvature would
definitely help improve the 3D matching. However, the perfor-
mance is satisfactory since the ICP matching for the LiDAR
will exclusively be in 2D.

Fig. 2: ICP performance for bottle point cloud

Fig. 3: ICP performance for bottle point cloud



V. RESULTS

The following plots are for data set 20. The scan matching
definitely preserved the general shape of the trajectory, but the
direction seemed off. The scan matching definitely had some
good traces, but exaggerated some turns along the trajectory,
which led to a general rotation from the initial trajectory.

Careful inspection of the LiDAR points in the world frame
can show that there is an offset of the points when the
robot makes a U-turn. With observation of the factor graph
optimized trajectory, these portions of the trajectory are put
closer together. LiDAR point translation given by the factor
graph The factor graph estimates fixes this very well for the
right-most section of the map, but struggles with the rest of
the map. However, it is a good sign that the factor graph
optimization did some good work.

The floor mapping didn’t seem too bad since all of the
colors had decent correlation with the surrounding and smooth
transitions. Note that all axes are in meters.

Given that the algorithms presented in this project were
prone to fast rotations, it would be adequate to implement
a robust method to prevent such errors from occuring.

Fig. 4: Motion model (top left), LiDAR scan match (top right),
and factor graph model (bottom) estimations

Fig. 5: LiDAR points (left) and floor mapping (right) with
motion model estimates

The following plots are for data set 21. Similar to dataset
20, the scan matching model shows a rotated version of the
original trajectory. Perhaps the ICP algorithm was a little too
sensitive and converged to a point that it shouldn’t have.

Fig. 6: LiDAR points mapping from factor graph estimates

The factor graph model is definitely not correct, under some
assunmptions of the room shape. However, the horizontal
portion of the bottom right maintained its shapre, which is a
good sign. Perhaps the horizontal hallway had better matching
LiDAR points that allowed better orientation tracking.

Fig. 7: Motion model (top left), LiDAR scan match (top right),
and factor graph model (bottom) estimations

Fig. 8: LiDAR points (left) and floor mapping (right) with
motion model estimates



Overall, the scan matching has overdid some of the rota-
tions, which led to instances of the entire trajectory being a
rotated version of the original. Furthermore, the factor graph
model performed well only under circumstances with good
scan matches.

With more time, I would’ve definitely implement the oc-
cupancy grid map along with better implementations for ICP
and LiDAR point mapping.


