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Abstract—This report presents an individual effort towards im-
plementing visual-inertial simultaneous localization and mapping
(SLAM) using an extended Kalman filter (EKF). The project aims
to integrate measurements from an inertial measurement unit
(IMU) and a stereo camera to estimate the trajectory of the IMU
and the positions of visual landmarks in a dynamic environment.
The report outlines a systematic approach to address three key
tasks: IMU localization via EKF prediction, landmark mapping
via EKF update, and the integration of IMU prediction with
landmark update to achieve visual-inertial SLAM. A detailed
discussion of the problem formulation, technical approach, and
results is provided, including insights into successful strategies,
challenges encountered, and areas for further improvement. The
report also emphasizes the significance of visual-inertial SLAM in
robotics and autonomous systems, highlighting its relevance in
various real-world applications. Overall, this work contributes
to the understanding and implementation of advanced sensor
fusion techniques for robust localization and mapping in complex
environments.

Index Terms—Robotics, sensor fusion, SLAM, estimation, ex-
tended Kalman filter, nonlinear optimization

I. INTRODUCTION

Visual-Inertial Simultaneous Localization and Mapping
(SLAM) stands at the forefront of modern robotics and au-
tonomous systems. It addresses the critical need for accu-
rate and robust localization and mapping in dynamic and
unstructured environments. As robots navigate through real-
world scenarios, they encounter challenges such as varying
lighting conditions, dynamic obstacles, and complex geometric
structures. Traditional localization and mapping methods often
struggle to cope with these challenges, leading to inaccurate or
unreliable estimates of robot pose and environment geometry.
Visual-Inertial SLAM offers a promising solution by fusing
measurements from both visual sensors, such as cameras,
and inertial sensors, like accelerometers and gyroscopes, to
enhance localization and mapping performance. This inte-
gration enables robots to navigate more effectively, enabling
applications in fields such as autonomous driving, robotic
exploration, and augmented reality.

One fundamental aspect of Visual-Inertial SLAM is IMU
localization, which involves estimating the pose of the robot
over time using measurements from an Inertial Measurement
Unit (IMU). IMUs provide information about the linear and
angular velocities of the robot, allowing for the prediction
of its trajectory. In this project, we employ an Extended
Kalman Filter (EKF) approach to integrate IMU measurements
with kinematics equations, enabling accurate pose estimation

despite sensor noise and dynamic motion. By leveraging EKF
prediction, we aim to track the motion of the robot with high
precision, laying the foundation for robust SLAM.

In addition to IMU localization, Visual-Inertial SLAM re-
quires mapping the environment by estimating the positions of
visual landmarks observed by the camera. Landmark mapping
involves associating detected visual features across multiple
frames and estimating their 3D positions in the environment.
To achieve this, we implement an EKF-based approach where
the unknown landmark positions are treated as states to be
estimated. By incorporating visual feature measurements and
leveraging EKF update steps, we aim to accurately reconstruct
the environment’s geometry despite challenges such as occlu-
sions and limited sensor viewpoints.

The core of Visual-Inertial SLAM lies in integrating IMU
localization with landmark mapping to achieve a complete
SLAM algorithm. By combining the EKF prediction step for
IMU localization with the EKF update step for landmark
mapping, we create a unified framework for visual-inertial
SLAM. This integration enables the system to continuously
refine both the robot’s pose and the environment’s map in a
consistent manner. Through careful fusion of IMU and visual
measurements, our EKF SLAM algorithm aims to provide
accurate and reliable localization and mapping capabilities,
even in challenging real-world scenarios.

II. NOTATIONS AND PRELIMINARIES

In total, we are given measurements indexed by t =
0, . . . , T . The UNIX time stamp for a certain time step will
be τt and the change in real time between time step t and
t + 1 will be ∆τt. The orientation of the car at times step
t will be Tt ∈ SE(3) ⊂ R4×4, where T0 = I , the identity
matrix. Any transformation matrix Tt can be decomposed into
Rt ∈ SO(3) and tt ∈ R3 arranged as follows:

Tt =

[
Rt tt
0⊤ 1

]
.

where

SO(3) = {A ∈ R3×3|A⊤A = I, detA = 1}

This pose can also be represented as a vector in R6, and this
will be called the axis-angle representation.

Let exp(.) be defined by the Taylor series expansion of the
exponential function. This will allow taking the exponent of
matrices.



Fig. 1: Visual features matched across the left-right camera frames (left) and across time (right) (Source: ECE276A PR3 doc)

The inertial measurement data have been preprocessed, so
the data offers vt,ωt ∈ R3, the linear velocity and angular
velocity at time step t. These two vectors are organized as
follows:

vt =
[
vx vy vz

]⊤
,ωt =

[
ωx ωy ωz

]⊤
Where vx, vy, vz is the velocities in the x, y, z directions, while
ωx, ωy, ωz are the pitch, roll, and yaw values. Combining these
two vectors together, we will create the control input vector
at time t to be ut ∈ R6, where ut =

[
v⊤
t ω⊤

t

]⊤
.

Let zt ∈ R4×M be the pixel measurements of M dif-
ferent features at the time step t. These features have been
preprocessed and have been correlated over all times steps.
Hence, the jth column of zt, denoted zt,j ∈ R4 are the pixel
measurements of the same feature over all t, formatted as
followed:

zt,j =
[
xL, yL, xR, yR

]T
,

where xL, yL denote the pixel measurement of the feature
in the left camera frame, while xR, yR denote the pixel
measurement of the feature in the right camera frame. If the
certain feature has no pixel measurement at a certain time step,
then the column will be

[
−1,−1,−1,−1

]
.

zt,j will be measuring the landmark mj =[
mx my mz

]T ∈ R3, where mj,x,mj,y,mj,z are
the world coordinates of the landmark j. Occasionally,
we will use mj =

[
m⊤

j 1
]T

to denote homogeneous
coordinates.

We are also given parameters to convert information be-
tween the camera and the IMU. Let ITO be the transformation
matrix from the optical frame of the camera to the IMU frame,
and OT I = IT

−1
O be the transformation in the other direction.

Let K be the intrinsic calibration matrix for a single stereo
camera

K =

fsu 0 cu
0 fsv cv
0 0 1


which is given. Additionally, the distance between the left and
right camera is 0.6 meters in the x-direction of the left camera,
so the translation from the left to right camera in the left
camera’s orientation frame is p =

[
0.6 0 0

]
. Otherwise

there is no orientational difference between the two cameras.
With all of this can construct a Ks, the calibration matrix for
the stereo camera system:

Ks =


fsu 0 cu 0
0 fsv cv 0

fsu 0 cu −fsub
0 fsv cv 0


Define the hat map (.)∧ (also denoted as (̂.)) be a func-

tion either from R3 → R3×3 or R6 → R4×4. Let x =[
x1 x2 x3

]⊤ ∈ R3 then

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

However, if we have a vector like ut ∈ R6, then

ût =

[
ω̂t vt

0⊤ 1

]
.

Similarly, define the curly hat map (.)⋏ : R6 → R6×6 where

(ut)
⋏ =

[
ω̂t v̂t

0 ω̂t

]



Define the dot map (.)⊙ : R4 → R4×6 for homogeneous
vectors v =

[
v 1

]⊤
where

(v)⊙ =

[
I −v̂
0 0

]
Define the projection function π : R4 → R4, where if we

have v =
[
a b c d

]T
, then

π(v) =
[
a
c

b
c 1 d

c

]T
and the vector derivative is the following:

dπ

dv
=


1 0 −a

c 0
0 1 − b

c 0
0 0 0 0
0 0 −d

c 1


Let ⊗ be the Kronecker product between two matrices.
Let N (µ,Σ) be a Gaussian normal probability distribution

with expected value, or mean, µ and covariance matrix Σ.
The mean and covariance at time step t will be µt and Σt

respectively. Now given information regarding the estimated
orientations xt ∈ R6, control inputs ut, and observations zt
over some time steps, we will make the follow simplifications
for briefer notation:

xt|t = xt|x0:t−1,u0:t−1, z0:t

xt+1|t = xt+1|x0:t,u0:t−1, z0:t

And this notation follows for covariance as well.
pdf is used as an acronym for probability distribution

function.

III. PROBLEM FORMULATION

In this paper, we will be using data gathered from a car
driving around a town. All of the problems will be solved
under the Markov assumption and thus modeled by a Markov
chain. All noise presented in each model will be assumed
independent.

A. Localization

First, we want to know where our car is at each time step.
Let x0 denote the initial pose, initialized to be the identity
pose, in whichever representation we desire to use.

At time t, given the robot’s pose xt and control input ut,
we can iteratively describe the robot’s pose at t+ 1

xt+1 = f(xt,ut,wt)

where wt is motion noise. Clearly, the distribution of xt+1 is
dependent on the information of the previous time step, hence:

xt+1 ∼ pf (.|xt,ut,wt).

We will call this the motion model. We want to find xt such
that the following probabilities are maximized:

p(xt|u0:t−1),∀t = 0, . . . , T

Essentially, we are ensuring that the locations of the car obey
the velocity and angular velocity measurements that were
given.

B. Mapping

Now, under assumption that the xt are accurate, we want to
map the environment around the map. Let m be the collection
of all mj . We obtain observations of m, zt, at each time step.
Therefore, there is a dependence between zt and m.

zt = h(xt,vt)

where vt is the observation noise. h is considered to be a
black box with parameters configured by m. Similar to the
motion model, zt admits a probability distribution as well.

zt ∼ ph(.|xt,vt)

We will call this the observation model. We want to find m
such that the following probabilities are maximized:

p(m|xt, zt),∀t = 0, . . . , T

Here, we want to make sure that our estimations of the
environment align with our observations of the environment
from certain orientations.

C. SLAM

Given the motion and observation models, our goal is the
estimate the position of our moving body x0:T and map the
environment m using the control inputs u0:T and observations
z0:T . In more formal terms, we want find x0:T and m that
maximize the following probabilities

p(xt,m|u0:t−1, z0:t),∀t = 0, . . . , T

The parallels between the last two sections and SLAM can
definitely be seen. We will approach SLAM problem by first
consider the localization problem, then the mapping problem.
Finally, we will put those two steps together in order to
perform SLAM.

In our specific problem, we have the information ut = the
linear and angular velocity and zt = pixel measurements of
mj , j = 1, . . . ,M at each time step t. We want to find the
best possible estimations of xt, the positions of the car, and
mt, the positions of the landmarks.

D. Extended Kalman Filter

In this project, we will be using a filtering scheme known
as the extended Kalman filter (EKF) where we assume that

• the probability distribution of the all poses and landmarks
positions are Gaussian

• wt ∼ N (0,W ),vt ∼ N (0, V ) .
We use the EKF because we are working with a very

complex nonlinear problem, and we want to simplify as many
calculations as possible without losing much information. This
is done by approximating the nonlinear model as a first-order
Taylor polynomial, representing random vectors as their mean,
and forcing the posterior pdfs to be Gaussian to allow robust
estimation of the pdfs just by the mean and covariance.

Let xt|t ∼ N (µt|t,Σt|t) where µt|t,Σt|t are given.



First, we obtain the linear approximation of the motion
model at the most likely position of xt with mostly likely
amount of noise to estimate xt+1|t

xt+1|t = f(xt|t,ut,wt) ≈ f(µt|t,ut, 0)

+
∂f

∂xt|t

∣∣∣
xt|t=µt|t,wt=0

(xt|t − µt|t)

+
∂f

∂wt

∣∣∣
xt|t=µt|t,wt=0

(wt − 0)

Let Ft =
∂f

∂xt|t

∣∣∣
xt|t=µt|t,wt=0

and Qt =
∂f
∂wt

∣∣∣
xt|t=µt|t,wt=0

Now, using the initial estimate of xt+1 we will linearize
the observation model with the same reasoning to estimation
zt+1|t

zt+1|t = h(xt+1|t,vt) ≈ h(µt+1|t, 0)

+
∂h

∂xt+1|t

∣∣∣
xt+1|t=µt+1|t,vt=0

(xt+1|t − µt|t)

+
∂h

∂vt

∣∣∣
xt+1|t=µt|t,vt=0

(vt − 0)

Just like before, let Ht+1 = ∂h
∂xt+1|t

∣∣∣
xt+1|t=µt+1|t,vt=0

and

Rt+1 = ∂h
∂vt

∣∣∣
xt+1|t=µt|t,vt=0

.

With these simplifications, the EKF will PREDICT then
UPDATE.

In the prediction step, xt+1|t can’t really disobey the motion
model. However, since many uncertain entities acted upon
each other, the covariance must have an update.

µt+1|t = f(µt|t,ut, 0)

Σt+1|t = FtΣt|tF
⊤
t +QtWQ⊤

t

and this concludes the prediction step.
Then we must prepare for the update step, where this

prediction is corrected based on the observation at t+ 1. We
want to make our observation at t + 1, given our position at
µt+1|t, match the real observation obtained.

µt+1|t+1 = µt+1|t +Kt+1|t(zt+1 − h(µt+1|t, 0))

Σt+1|t+1 = (I −Kt+1|tHt+1)Σt+1|t

where

Kt+1|t = Σt+1|tH
⊤
t+1(Ht+1Σt+1|tH

⊤
t+1 +Rt+1V R⊤

t+1)

And this concludes the update step.

IV. TECHNICAL APPROACH

Throughout this paper, we will be applying the EKF in order
to estimation the trajectory of the car, as well as the landmarks
detected by the stereo cameras. As we applying the estimation
method, we will be plotting the trajectory of the means of the
distributions.

A. Data Preprocessing

Before using any of the observations zt, we have to make
sure that they are reasonable points. For a stereo camera
system, xL < xR must be enforced, so for any zt,j such that
xL < xR, set zt,j =

[
−1 −1 −1 −1

]
.

Furthermore, in order to same computational cost and use
the best data for SLAM, we will make sure to only use features
that have more than a certain number of pixel measurements.
This can also be tuned, but it can exponentially affect the run
time.

B. Localization via Inertial Measurements

We will first initialize T0 = I and Σ0 to our liking. Tuning
these parameters will be explained later in this section.

Let Tt|t ∼ N (µt|t,Σt|t) where µt|t ∈ SE(3),Σt|t ∈ R6×6.
The covariance matrix has a dimension of 6 because elements
in SE(3) have 6 degrees of freedom, so we are keeping track
of the xyz coordinates along with its pitch, roll, and yaw
orientations instead of each element in Tt|t. Notice that we are
working with a term in SE(3), so we must somehow convert
the inertial measurements ut to an element of SE(3) in order
to apply a well-defined transformation to Tt|t. We will still
have noise distributions as defined in the previous section.

The solution is to apply the hat map to ut ∈ R6. This
allows the angular velocities to be convert to a rotation matrix
and linear velocity to a translation vector, all arranged in a
transformation matrix. Then, apply the time discretization τt
and take the exponential map so the the rotation matrix falls
into SO(3). Hence, we have the following motion model

Tt+1|t = f(Tt|t,ut,wt) = Tt|t exp(τt(ut +wt)
∧),

and we have the prediction step

µt+1|t = Tt|t exp(τtût)

Σt+1|t = exp(−τt(ut)
⋏)Σt|t exp(−τt(ut)

⋏)⊤ +W

since we have Ft = exp(−τt(ut)
⋏) and Qt = I . We are not

consider the landmarks yet, so there is not update step.

C. Landmark Mapping

Assume that the Tt|ts in the previous section are accurate,
then we can immediately extract the trajectory via the means
of the distributions, which are µt+1|t. We will now perform
the update step exclusively on the landmark mj but not the
poses.

Before any updates, the distribution of mj must be ini-
tialized. In order to do so, we will use the first instance of
zt,j that is not

[
−1 −1 −1 −1

]⊤
. Recall that zt,j =[

xL yL xR yR
]⊤

. For simplicity, let zL =
[
xL yL

]⊤
and zR =

[
xR yR

]⊤
. The relative rotation from the left

camera to the right camera is R = I and the translation is p
as defined in the previous section. For any pixel measurement
z, we can obtain the corresponding point in the optical frame
z′

z′ = K−1z



Using the measurements in the optical frame, construct a,b

a = R⊤p− e⊤3 R
⊤pz′R

b = R⊤z′L − e⊤3 R
⊤z′Lz

′
R

and then we can recover the point in the camera frame

mj =
a⊤a

a⊤b
z′1

Due to the simplicity of the camera configurations, we can
obtain a better closed form:

a = p,b = z′L − z′R

mj =
0.6

x′
L − x′

R

z′L

Then initialize mj as a probability distribution

mj ∼ N (g
( 0.6

x′
L − x′

R

z′L

)
,Σj)

where g dehomogenizes the homogeneous vector. We can
initialize the covariance as desired.

Our observation model is defined by h:

h(Tt+1,mj ,vt) = Ksπ(OT IT
−1
t+1mj) + vt

Let P =
[
I 0

]
∈ R3×4, then we have the partial derivative

with respect to mj with multiply applications of the chain rule

∂h

∂mj
= Ks

∂π

∂q
(OT IT

−1
t+1mj)OT IT

−1
t+1P

T

∂h

∂vt
= I

We want to update all of m all at once, and we know that
they are not necessarily independent. To resolve this, let µ0 =
0 ∈ R3M and Σ = IM×M ⊗ V , where M is the number of
landmarks that we saw until time t and each mean is stored
in triplets of the vector i.e.

m =
[
m⊤

1 . . .m⊤
M

]⊤
.

We will assume a bijection from observations to landmark. If
the jth landmark is first observed, then it will be initialized by
the triangulation of the first observation. Afterwards, we will
update M .

Let Jt = {j = 1, . . . ,M |zt,j ̸=
[
−1 −1 −1 −1

]⊤}.
Construct the vector to store all of the predicted observations

at t+ 1 given Tt+1.

z̃t+1 =

Ksπ(OT IT
−1
t+1mj) if j ∈ J[

−1 −1 −1 −1
]⊤

else

Then we construct Ht+1 ∈ R4M×3M

[Ht+1]4j−4:4j,3j−3:3j

=

{
Ks

∂π
∂q (OT IT

−1
t+1mj)OT IT

−1
t+1P

T if j ∈ J

0 else

µt+2|t+1 = µt+1|t +Kt+1|t(zt+1 − z̃t+1)

Σt+2|t+1 = (I −Kt+1|tHt+1)Σt+1|t

where

Kt+1|t = Σt+1|tH
⊤
t+1(Ht+1Σt+1|tH

⊤
t+1 + I ⊗ V )

since Rt+1 = IM×M ⊗ I = I3M×3M . Thankfully, if a
landmark j had just been initialized, then zj − z̃j ≈ 0, so
there is no need for additionally filtering.

D. Visual Inertial SLAM

We will now put the two steps together to perform visual
inertial SLAM. Since the position of the car and the location of
the landmarks can not be assumed to be independent, we must
construct a mean vector and covariance matrix that encodes
both the pose and the landmarks positions. We will let the
noise distribution defined identically as before.

Let µ0 ∈ 0 and let Σ0 be chosen as desired.
Let µt|t ∈ R3M+6,Σt|t ∈ R3M+6×3M+6, where the [µ]6,

or the first 6 entries of µ, are the axis-angle representation of
the pose, while [µ]3M , the last 3M entries, are the landmark
positions. The covariance matrix will have the following
configuration

Σ =

[
ΣPP ΣPL

ΣLP ΣLL

]
where ΣPP is the top left 6 × 6 block that represents the
covariance of the pose while the ΣLL is the 3M × 3M block
that represents the covariance of the landmarks. ΣPL and ΣLP

are of appropriate sizes that represent the cross correlation
between the the landmarks and the pose.

Let yt|t ∼ N (µt|t,Σt|t) be our prior distribution. We pro-
ceed with the prediction step via the motion model exclusively
for [yt|t]6 as defined in Part B. Let E = exp(−τt(ut)

⋏) then
for the covariance update, we do

Σt+1|t =

[
EΣPPE

T +W EΣPL

ΣLPE
T ΣLL

]
We will obtain µt+1|t,Σt+1|t.

Then our update step is similar to Part C. If a landmark has
not been initialized, then initialize it using the triangulation
method defined in Part C. Since we want to update the pose
and the landmarks simulatenously, we have to encode both
linearizations into one Ht+1 ∈ R4M×3M+6 matrix. Separate
the matrix into a 4M × 6 block for the pose and 4M × 3M
block for the landmarks.

The 4M ×6 corresponds to the first order Taylor expansion
of the observation model with respect to the pose. Let µt+1|t ∈
R6 be Tt+1|t. The the partial derivative of h with respect to
Tt+1|t is the following:

∂h

∂Tt+1|t
= Ks

∂π

∂q
(OT IT

−1
t+1|tmj)OT I(T

−1
t+1|tmj)

⊙



Therefore, for the left 4M + 6 block,

[Ht+1]4j−4:4j,:6

=

{
Ks

∂π
∂q (OT IT

−1
t+1|tmj)OT I(T

−1
t+1|tmj)

⊙ if j ∈ J

0 else

We will initialize the 4M × 3M block just as in Part C.
Then proceed with the updates with

Kt+1|t = Σt+1|tH
⊤
t+1(Ht+1Σt+1|tH

⊤
t+1 + I ⊗ V ).

The landmark updates will be identical to Part C. However,
for the mean update

µt+1|t+1 = µt+1|t exp((Kt+1|t(zt+1 − z̃t+1))
∧)

Recall that M is a dynamic value that tracks how many
landmarks we have seen so far. This allows the matrices to
be smaller at earlier time steps, which makes computation a
tad bit faster.

Throughout all of the code, we will be using the compressed
sparse row (csr) matrix library from scipy. Due to the sparsity
and the large dimensions of the matrices, computing the
inverse can be computational heavy and wasteful since most
entries are 0. This library allows us to compute inverses and
matrix multiplications significiantly faster.

E. Parameter Tuning

It is crucial to select the right parameters when doing
SLAM. Higher covariance values means that updates will be
small because we’re uncertain of the parameter anyway. If our
observation error is big, it can be controlled by increasing our
initial uncertainty. However, if covariance is low and there
is high error in the observations, then the mean is updated
drastically. This paper will provide some visualizations on
what this looks like.

In this problem, we want to rely on the inertial localization
as much as possible. Therefore, we will let W = 0.0001I
of the appropriate dimension. Because we do not want the
observation to make drastic changes to the trajectory, the
observation noise will be set to V = 100I of appropriate
dimension.

For the covariance initialization, with similar logic, the
position covariance will be initialized to 0.0001I , while the
landmark covariance will be 100I .

V. RESULTS

For both datasets, the features have been downsampled to
around 600 features.

The following plots represent the localization, mapping, and
SLAM results for two different datasets. For all of the figure,
the landmarks only within an 2-norm less than 1500 from the
”center of mass” of the trajectory are shown. One particular
note is that when the observation and initial landmark covari-
ance is set to such high values, some landmarks tend to move
very far away, to coordinates in the 10000s.

It must be realized that we want to the use the observations
as means of correction and not rely on them too much.
Throughout parameter tuning, this has been noticed greatly.

This is definitely a trade-off that I willingly took in order
to prioritize the localization task over the mapping task.
However, this is fine since if we have more features, then
some landmarks being incorrect is not too much of a big deal.
As long as there are sufficient number of points in relatively
correct locations, then our map fulfills its role.

The final figure shows what happens what the observation
covariance noises are too small. The incorrect trajectory still
definitely resembles the turns in the original trajectory at the
right moments. However, these turns are sharper probably due
to the feature moving off the camera view very quickly.
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Fig. 2: Motion model (left), initial landmark positions (right)
for dataset 03



Fig. 3: Motion model (left), initial landmark positions (right)
for dataset 03

Fig. 4: Prior vs EKF-optimized landmark positions for dataset
03

Fig. 5: EKF-SLAM optimized trajectory and landmark posi-
tions for dataset 03

Fig. 6: Motion model (left), initial landmark positions (right)
for dataset 10

Fig. 7: Prior vs EKF-optimized landmark positions for dataset
10



Fig. 8: EKF-SLAM optimized trajectory and landmark posi-
tions for dataset 10

Fig. 9: EKF-SLAM optimized trajectory with poor covariance
selection for dataset 10


