
Dynamic Programming for Optimal Control
Jay Paek

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, California
jpaek@ucsd.edu

Abstract—This project addresses the challenge of autonomous
navigation in a Door and Key environment using Dynamic
Programming (DP). The objective is to guide an agent to a
goal location while overcoming obstacles such as closed doors
requiring keys for access. Two scenarios are explored: ”Known
Map,” where specific environments are provided, and ”Random
Map,” where environments vary randomly. In the ”Known Map,”
individual control policies are computed for each environment,
while a single policy adaptable to any of the 36 random 8x8
environments is devised for the ”Random Map.” The report
presents a comprehensive overview of the problem formulation
as a Markov Decision Process (MDP) with well-defined state and
control spaces, motion models, initial states, planning horizon,
and cost functions. The technical approach entails implementing
a DP algorithm in Python to derive optimal control policies.
Results showcase visualizations of agent trajectories under vary-
ing starting positions and orientations, assessing the algorithm’s
efficacy and limitations. This study contributes to understanding
autonomous navigation challenges in complex environments, with
potential applications in robotics and real-world scenarios.

Index Terms—Robotics, dynamic programming, optimal con-
trol, searching, path-finding

I. INTRODUCTION

Autonomous navigation poses a significant challenge in
robotics, especially in dynamic environments with obstacles
and complex spatial configurations. The Door & Key problem
encapsulates one such scenario, where an agent must navigate
through a maze-like environment to reach a goal while encoun-
tering doors that may block its path. The presence of locked
doors necessitates the acquisition of keys, introducing a layer
of decision-making and resource management. This problem
is not only a theoretical exercise but also mirrors real-world
applications in robotics, such as automated delivery systems,
exploration missions in unknown territories, or even household
assistance robots maneuvering through cluttered spaces.

Addressing the Door & Key problem requires a systematic
approach grounded in principles of decision-making under
uncertainty. Formulating the problem as a Markov Decision
Process (MDP) provides a robust framework for designing
optimal control policies. Key elements of the MDP include
defining the state space, control space, motion model, ini-
tial state, planning horizon, and cost functions. By clearly
delineating these components, we establish a mathematical
foundation upon which to devise strategies that minimize the
agent’s energy expenditure while efficiently navigating the
environment. This project aims to develop and implement a
Dynamic Programming algorithm to derive optimal control

policies, offering insights into effective navigation strategies
and their performance under varying environmental conditions.

Through this project, we endeavor to contribute to the field
of planning and learning in robotics by tackling a practical
navigation problem within a controlled yet realistic setting.
By employing Dynamic Programming techniques, we seek to
optimize the agent’s decision-making process, enabling it to
navigate the Door & Key environment with minimal energy
consumption. The ensuing discussion will delve into the tech-
nical intricacies of our approach, highlighting both successes
and challenges encountered during algorithm development and
implementation. Ultimately, our aim is to provide a compre-
hensive understanding of autonomous navigation strategies,
paving the way for more sophisticated robotic systems capable
of operating effectively in diverse and dynamic environments.

II. NOTATION AND PRELIMINARIES

The “agent” will be the autonomous navigator that we will
try to produce an optimal policy.
X denotes the state space, an ordered set of all possible

states, x, of the agent. The order is determined by the
construction of X in a first-in-first-out basis. U denotes the
control space, the set of all possible control inputs, u, for the
agent.
f : X × U → X is the motion model for the agent, which

computes the new state with respect to the control input.
ℓ : X ×U → R is the cost function for a control input u at

any state x.
T is the time horizon of the agent to reach the goal state.

t = 0, . . . , T will denote the time steps. q : X → R is the
terminal cost assign to each state at time T . πt : X → U
denotes the control policy at a certain time t that maps a state
x to a control input u. Vt : X → R is the value function at
time t where it assigns the cumulative cost to be at some state
x at some time t.

A Markov decision process, abbreviated as MDP, is a prob-
abilistic model with a state space X , control space U , initial
state distribution p0(.), motion model distribution pf (.|x,u),
time horizon T , loss function ℓ, terminal cost function q,
and foresight constant γ. In short, it will be summarized as
MDP(X ,U , p0, pf , T, ℓ, q, γ).

III. PROBLEM FORMULATION

Our goal is to compute an optimal control policy for
the agent navigating through a grid-like environment of size

d × d. The environment is sectioned into different cells with
coordinates assigned as (x, y). The horizontal direction from
left to right will be x = 0, . . . , 7 and the vertical direction
from top to bottom will be y = 0, . . . , 7. For example, the top
left cell is (0, 0) and the bottom right cell is (d, d). Each cell
can either hold a key, be a wall, door, goal, or movable space.

The agent is spawned in this environment with two initial
properties: position and direction. The initial position will be
denoted by the cell coordinates of a movable space, (x, y).
The initial direction will be either up (0), right (1), down (2),
or left (3), and it is clear that the rightward and downward
direction are the positive x and y directions, respectively, from
the environment set-up. In general, any state x ∈ X will have
the following format:

x =

x position
y position
direction

door/key state
additional states

where the first three entries is the position and direction for the
agent, respectively. The format may switch between a vector
and a tuple, but the order of the elements is preserved. For
door/key state will either be

• (0) if the key is not obtained
• (1) if the key is obtained
• (2) if the target door is opened

Other additional states will be explained in the next section.
We will index the ith component via the notation [x]i
G ⊂ X denotes the states that are consider as the goal states.
We have U = {0, 1, 2, 3, 4} for u ∈ U ,

u =

0 move forward
1 turn countclockwise
2 turn clockwise
3 pick up key
4 unlock door

In this problem, the agent interacts with the environment in a
certain way:

• The agent can not move to a spot with a key, wall, or a
locked door.

• The agent can pick up the key only when it is adjacent
to and facing towards the key.

• After picking up the key, the cell with a key becomes a
movable cell.

• The agent can only open the door when it is adjacent and
facing towards a locked door.

• After unlocking the door, the cell with the door becomes
a movable cell.

Ultimately, we want to design an algorithm that computes the
optimal control policy for the agent to reach the goal. We
want to develop an algorithm that computes the optimal control
policy for two different scenarios:

• Known Environment: The entire map is known and the
location of the key, door, goal, and agent, along with the

state of the door are known. This information can be used
to compute the optimal control policy.

• Pseudo-Random Environment: The general map structure
is an 8 × 8, and the perimeter is surrounded by walls.
There is a vertical wall at column 4 with two doors at (4,
2) and (4, 5). Each door can either be locked or unlocked.
The key is randomly located in one of three positions {(1,
1),(2, 3),(1, 6)} and the goal is randomly located in one of
three positions {(5, 1),(6, 3),(5, 6)}. The agent is initially
spawned at (3, 5) facing up.

In mathematical terms, we want solve the following finite
horizon optimal control problem:

min
πt:T−1

V π
t (x) :=Ext+1:T

[
q(xT) +

T−1∑
τ=t

ℓ(xτ , πτ (xτ))
∣∣∣xt = x

]
s.t. xτ+1 ∼ pf (.|xτ , πτ (xτ)), τ = t, . . . , T − 1

xτ ∈ X , πτ (xτ) ∈ U

IV. TECHNICAL APPROACH

There are two different scenarios which the agent must
develop an optimal control policy for. The differences in
technical approach for each scenario will be described in-depth
in different subsections. However, the general approach to each
scenario is very similar.

A. General Approach
We will be using the dynamic programming (dp) algorithm

in order to compute the optimal control policy π0:T . In
essence, the dp algorithm will begin at the goal states at time
T and initialize them to be of minimal terminal cost, while
initializing all other states with∞. Then at each previous time
step, it will consider each possible control input at every state.
Some of the states at the previous time step will end up at the
goal state, so it will reward this control input at this state
by giving it a finite cost. At the time step, it will choose to
proceed with the control input that minimizes the culumative
value function.

Afterwards, this is done until the algorithm worked its way
all the way back to t = 0. Although this is not guaranteed
to converge to a single control policy in general, since our
system is determinstic, we can assume it is well-behaved.

Normally for a navigation and planning problem, we are
given a probabilistic initial state and motion model, but
with the given determinstic behavior of the agent, we can
eliminate any probabilistic uncertainty within the dp algorithm.
Additionally, since the environment is static, there is no need
to return π1:T . The control policy at each time step should
remain the same for all states since the environment is not
dynamic.

With some consideration regarding the door/key environ-
ment, it is possible to design the terminal cost function:

q(x) =

{
0 if x ∈ G
∞ else

coming from the fact that we want to deincentivize the agent
from: not being at the goal state at t = T .

Algorithm 1 Deterministic Dynamic Programming

Require: MDP(X ,U , f, T, ℓ, q)
VT (x) = q(x),∀x ∈ X
for t = (T − 1), . . . , 0 do¸

Qt(x,u) = ℓ(x,u) + Vt+1(f(x,u)),∀x ∈ X ,u ∈ U
Vt(x) = min

u∈U
Qt(x,u),∀x ∈ X

πt(x) = argmin
u∈U

Qt(x,u),∀x ∈ X
end for
return π0, V0

Let x ∈ X ⊂ Zn and E : X → Z be an encoding function.
Each entry of x will be a single digit integer, so we can encode
each state to an n digit number. Each encoding will be unique
since the states are unique. Construct a dictionary that will
hash the encoded state, E(x) and give it a value as the index
of x in X . We do this so that we can index states without
searching the state space in O(n) and instead can index the
dictionary with O(1).

B. Known Environment

For the known environment, obtain the door (dx, dy), key
(kx, ky), and goal (gx, gy) locations as well as all of the
movable cells M. In all environments, the door is initialized
to be locked. Let x ∈ X be as follows:

x =

x position
y position
direction

door/key state

Initialize the state space:

X =
(
M×{0, 1, 2, 3} × {0, 1, 2}

)
∪
(
{(kx, ky)} × {0, 1, 2, 3} × {1, 2}

)
∪
(
{(dx, dy)} × {0, 1, 2, 3} × {2}

)
which are the states that capture the agent in a movable
cell facing any direction with any key possession state, are
the key’s location after obtaining the key since it becomes a
movable cell, and represent the door’s location after unlocked
since it become a movable cell. Then, every Z4 vector will be
encoded and put into a hash table.

For this scenario, we will use the following loss function:

ℓ(x,u) =

0 if facing key or door;u = 3, 4

1 if f(x,u) ∈ X ;u = 0, 1, 2

∞ else
,

So we incentivize the agent picking up the key and unlocking
the door when needed. Any movement control input needs
a positive value so the dp algorithm can distinguish which
actions are most optimal. Set T = |X |, and then we have
everything initialized to apply the deterministic dp algorithm.

C. Psuedo-Random Environment

With some careful observation and thinking given the en-
vironment’s general structure, it is possible to simplify the
random environment problem:

• In general, when the agent desires to go from one cell
to another, it is most optimal to minimize the number of
turns throughout its traversal. This allows us to eliminate
some states to not consider at all, decreasing the size
of the state space. Since we want given a determinstic
environment, we can consider getting rid of some states
in order to steer the agent to a desirable path.

• If a key needs to be obtained, it is most optimal to unlock
towards the closest door, regardless of goal location.
Therefore, it is viable to only consider one door in any
scenario.

• The door and key will spawn in three predetermined
locations. These locations can be observed and encoded
into the state space.

With these facts, we can narrow down the movable spaces to
19 spaces, excluding doors and goals.

M = {[1, 2], [1, 3], [1, 4], [1, 5], [2, 2],
[2, 5], [3, 2], [3, 3], [3, 4], [3, 5],

[5, 2], [5, 3], [5, 4], [5, 5], [6, 1],

[6, 2], [6, 4], [6, 5], [6, 6]}

The format x ∈ X will be as follows:

x =

x position
y position
direction

door/key state
door state
key state
goal state

where the goal location is given by

(gx, gy) =

(5, 1) goal state = 0

(6, 3) goal state = 1

(5, 6) goal state = 2

,

key location is given by

(kx, ky) =

(1, 1) key state = 0

(2, 3) key state = 1

(1, 6) key state = 2

,

and the door’s states are given by
both doors locked door state = 0

(4, 2) is unlocked door state = 1

(4, 5) is unlocked door state = 2

both doors unlocked door state = 3

Construct the goal space and the state space

G = {(5, 1), (6, 3), (5, 6)} × {0, 1, 2, 3} × {0, 1, 2}
×{0, 1, 2, 3} × {0, 1, 2}2

Algorithm 2 Random Environment State Space Construction

for (d, i, j, k) ∈ {0, 1, 2, 3}2 × {0, 1, 2}2 do¸
X ← (4, 2, d, 2 ∗ (i%2 == 0), i, j, k)
X ← (4, 5, d, 2 ∗ (i < 2), i, j, k)
X ← (x, y, d, p, i, j, k),∀(x, y) ∈M, p ∈ {0, 1, 2, 3}

end for
return X

2 ∗ (i%2 == 0) and 2 ∗ (i < 2) initializes the top and
bottom door to be locked or unlocked depending on the door
initialization. If open, then it will not require the agent to have
[x]4, which is the door/key state, to be 2.

Construct the loss function:

ℓ(x,u) =

0 if facing closest key or door;u = 3, 4

1 if f(x,u) ∈ X ;u = 0, 1, 2

∞ else
,

and then set the time horizon: T = |M ∗ 12| since it is the
number of states disregarding the environment configuration.
Proceed with the dp algorithm.

V. RESULTS

A. Part A

The following figure is the optimal path for the 6×6−direct
environment:

Fig. 1: Optimal path for the 6× 6− direct environment (left-
right, up-down)

More paths can be found at google drive link at the bottom
of the document.

B. Part B

More paths can be found at google drive link at the bottom
of the document.

VI. ACKNOWLEDGMENTS

Thank you to ECE276B Instructors who extended this
deadline and prevented me from having a midterm on the due
date of the project.

drive link

Fig. 2: Optimal path for the a random environment (left-right,
up-down)

https://drive.google.com/drive/folders/12BrE6AsUM7Six6im0p9iZug9E3ZJveMI?usp=sharing

	Introduction
	Notation and Preliminaries
	Problem Formulation
	Technical Approach
	General Approach
	Known Environment
	Psuedo-Random Environment

	Results
	Part A
	Part B

	Acknowledgments

