
Motion Planning in 3-D Environments
Jay Paek

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, California
jpaek@ucsd.edu

Abstract—This project delves into the realm of motion plan-
ning within 3-D Euclidean spaces, focusing on both search-based
and sampling-based algorithms. The objective is to navigate
through environments defined by rectangular boundaries and
obstacles, moving from a start to a goal position. The project is
divided into three parts. In the first part, an algorithm for colli-
sion detection between line segments and axis-aligned bounding
boxes (AABBs) is implemented, ensuring safe navigation. The
second part involves the development of a search-based planning
algorithm, weighted A*, to enhance efficiency and navigate
through the environment. The final part presents sampling-based
algorithm, RRT*. This project aims to enhance understanding
and application of motion planning techniques in complex 3-D
environments, with a strong emphasis on algorithmic efficiency
and robustness in collision detection.

Index Terms—Robotics, dynamic programming, optimal con-
trol, searching, path-finding, planning

I. INTRODUCTION

Motion planning in robotics involves determining a feasible
path for a robot to move from a start to a goal position while
avoiding obstacles. This project focuses on implementing
two prominent motion planning algorithms: A-star (A*) and
Rapidly-exploring Random Tree Star (RRT*), coupled with
collision detection using PyBullet. A* is a widely-used search-
based algorithm known for its efficiency and optimality in
pathfinding, while RRT* is a sampling-based algorithm that
ensures asymptotic optimality, making it suitable for complex
and high-dimensional spaces. The integration of PyBullet, a
physics simulation engine, facilitates accurate collision de-
tection, which is crucial for the safety and reliability of the
planned paths.

To implement A*, the environment is discretized into a
grid where each cell represents a potential position for the
robot. A* searches for the shortest path by evaluating the
cost of moving from the start to the goal while avoiding
obstacles. The algorithm uses a priority queue to explore nodes
with the lowest cost first, based on a heuristic function that
estimates the remaining distance to the goal. The heuristic
guides the search towards the goal efficiently. During the
search, each node is checked for collisions using PyBullet,
ensuring that the path remains valid by avoiding any overlaps
with obstacles. This collision detection step is performed
by querying PyBullet’s physics engine to verify if the path
between nodes is free of obstacles, thus ensuring the generated
path is safe for the robot to traverse.

By combining A* with PyBullet for collision detection
and RRT*, this project demonstrates the practical application
of search-based and sampling-based algorithms in real-world
scenarios. The use of PyBullet not only enhances the accuracy
of collision detection but also simplifies the integration of
physics-based validation into the motion planning process.
This approach ensures that the generated paths are not only
optimal and efficient but also physically feasible and safe,
making it a robust solution for motion planning in complex
3-D environments.

II. PROBLEM STATEMENT

For this entire problem, any point or vector is in R3.
For each map, we are given strings with information of

the map boundary, starting point s, end point τ , along with
obstacles.

The map boundary information is encoded in a vector
format known as axis aligned bounding boxes (AABB) in R9.
The entire environment is ensured to be a rectangular prism.
The first three entries denote the coordinates of one corner,
and the next three entries denote the opposite corner. s and τ
are just given as R3 vectors within these boundaries.

The information for the obstacles are also encoded in a
vector in R9, and conveniently they are all rectangular blocks.
Similar to the map, the first six entries capture the positional
information of the obstacles.

The agent begins at the coordinate s and aims to reach
some ϵ distance away from τ . The agent is free to move in
any direction as long as it does not leave the map bounds or
collide with an obstacle.

In essence, we have a deterministic shortest path (DSP)
problem at hand. Essentially, given a graph G = {V, E}, we
want to find a sequence {in}N1 ⊂ V such that ||iN − τ || < ϵ
and the cost of the path

d({in}N1) =

N−1∑
n=1

cin,in+1

is minimized. ci,j or cij denotes the cost to move from node
i to j. For the sake of the problem, we will assume that all
movement has positive cost i.e. cij > 0,∀i, j ∈ V .

Let P be all possible finite-length paths, or traversable
sequence of nodes, such that the first node s and the last

node is ϵ-close to τ . Then the DSP program is formulated
as follows:

argmin
{in}N

n=1∈P
d({in}Nn=1)

There is no polynomial time algorithm that solves the DSP
problem, so a heuristic algorithm is required. Either we cant
Some notable searching algorithms include:

• Depth-first search, breadth-first search
• Dijkstra’s algorithm
• Bellman-Ford algorithm
• Jump point search
• A* search

In this project, we will be utilizing the A* search algorithm
and the RRT* sampling-based planning algorithm, which will
be explained in the next section.

III. TECHNICAL APPROACH

In this section, we will discuss the step-by-step approach
to each of the subproblems given at hand. All computational
aspect of this project are done with Python.

A. Collision Checking

We want to simulate the real-world, and the agent phasing
through an obstacle is not very realistic.

We will be using PyBullet, a physics simulation engine
library for Python. After launching the PyBullet simulation
engine, we need to add all of the environment information.
Thankfully, the collision objects can deal with AABB infor-
mation, which simplifies the preprocessing step.

Algorithm 1 Collision Check Preparation

Require: Environment and obstacle info in AABB: S ⊂ R9

Configure environment bounds
Set of obstacles O ← {}
for s ∈ S do

cs← CollisionShape(AABB)
vs← VisualShape(AABB)
O ← O ∪ {Multiobject(cs, vs)}

end for

After setting up the environment in the physics engine, a
simple use of the rayTest function will check whether a line
with end points (start, end) will collide with any objects.

B. Search-based Motion Planning

Before presenting the proposed solution to this problem, we
will present the idea behind the what is proposed.

The label correcting algorithm is a rudimentary approach
to a deterministic short path problem. Essentially, we will
maintain a list of nodes that seem to have potential to be
part of the shortest path towards the goal. Each node possess
a running cost gi, which describes the cost it takes to get to
node i from the starting node. In each iteration step, we will go
to the node that has potential to reach the goal and is easiest to
attain, and we will expand that node i.e. explore further from

Algorithm 2 Label Correcting Algorithm

Require: s, τ, c, g, h, ϵ
OPEN← {s}, gs = 0, gi =∞∀i ∈ V − {s}
while OPEN ̸= ∅ do

Remove i from OPEN
for j ∈ Children(i) do

if gj , gτ > gi + cij then
gj ← gi + cij ,
Parent(j)← i
if j ∈ OPEN then

OPEN = OPEN ∪{j}
end if

end if
end for

end while

that specific point. This process in continued until the goal is
reached.

The weight A* algorithm is a modification of the label
correcting algorithm that efficiently navigates towards the goal
through a success metric known as the heuristic function
denoted as h. We will let h be the Euclidean distance between
the input node and the goal. This will help navigate the agent
select the best nodes to expand and nodes that progressively
move towards the goal in the environment without significant
detours i.e. obstacles that encourage the agent to move in the
opposite direction of the goal. We have the parameter α, which
weighs the trust for the heuristic function. We can select this
parameter depending on the map.

Our version of weighted A* is implemented such that when
a node is “expanded”, it will check whether the children of a
node is invalid i.e. if they collide with an obstacle or are out
of bounds. Hence, there must be an initial step to assess the
validity before evaluating the traversability of a child node.

Algorithm 3 Weighted A* Algorithm

Require: s, τ, c, g, h, ϵ
OPEN← {s},CLOSED← {}
while τ /∈ CLOSED do

i = argmin
i∈OPEN

gi + αhi

CLOSED← CLOSED ∪ {i}
for j ∈ Children(i), j /∈ CLOSED do

if gj > gi + cij then
gj ← gi + cij
Parent(j)← i
if j ∈ OPEN then

Update priority of j
else

OPEN = OPEN ∪ {j}
end if

end if
end for

end while

Notes on A* implementation:

• To efficiently obtain the most promising node in the
OPEN set, we will use a priority queue, where the priority
is determined by fi.

• We will assume that the agent can only travel 0.31-units
exclusively in the positive and negative x, y, z direction.
We can set the travelling distance to other values. It
was noticed that setting the travelling distance to an nice
fraction caused the agent to move in the infinitesimally
small gaps between blocks. Hence the selection of the
distance.

• h(x,y) = ||x−y||2, and the heuristic constant varies by
map.

• ϵ = 0.5, which is the acceptable distance from the goal
to be considered “at the goal.”

• In the worst-case, the A* can be O(bn), where b is the
average number of edges from each node, and n is the
number of nodes on the resulting path.

• The memory complexity of A* isO(bn), since every node
needs to be tracked.

• We will not be preemptively creating the graph nor
discretize the space prior to the search. Starting at s we
will expand the node and attach new vertices based on
the children of the expanded node.

C. Part 3: Sampling-based Motion Planning

Apart from the other search-based algorithms, RRT* is a
probabilistic approach to the DSP problem. In normal RRT, we
will grow a tree from the starting node and begin constructing
a space filling curve until the goal is reached. However, RRT*
will continuous optimize the path by rewiring nodes that are
closer together instead of taking an unnecessary longer path.

We will be using a pre-implemented RRT* algorithm at this
repository. We must add the map bounds and obstacles in a
similar fashion to PyBullet. Then, after confinguring the start
and end point, we can call a function that executes the planning
algorithm. This search is probabilistically complete, so it will
definitely reach the goal almost surely. The time complexity,
however is hard to analyze.

Some notes on the RRT* algorithm:

• SampleFree samples points that do not have an obstacle.
• Nearest(.) returns to closest point to the input.
• Steer(.,.) attempts to construct a path from first input to

second input node.
• CollisionFree(.,.) checks if the path from the first to

second input does not collide with an obstacle.
• Cost is equivalent to cij

IV. RESULTS

Some observations regarding the results

• A* performed really well in environments where the
agent did not need to move in the opposite direction of
the goal. Raising the heuristic constant in these settings
significantly improved performance.

Algorithm 4 RRT*

V ← {xs};E ← ∅
for i = 1, . . . , n do

xrand ← SampleFree()
xnearest ← Nearest((V,E), xrand))
xnew ← Steer(xnearest, xnew)
if CollisionFree(xnearest, xnew) then

Xnear ← Near(V,E), xnew,min{r∗, ϵ}
V ← V ∪ {xnew}
cnearest = Cost(xnearest)
cline = Cost(Line(xnearest, xnew))
cmin ← cnearest + cline
for xnear ∈ Xnear do

if CollisionFree(xnear, xnew) then
cnear ← Cost(xnear)
csearch ← Cost(Line(xnear, xnew))
if cnear + csearch < cmin then

xmin ← xnear

cmin ← cnear + csearch
end if

end if
end for
E ← E ∪ {(xmin, xnew}
for xnear ∈ Xnear do

if CollisionFree(xnew, xnear) then
cnew ← Cost(xnew)
cwire ← Cost(Line(xnew, xnear))
if cnew + cwire < cnear then

xparent ← Parent(xnear)
E ← E − {(xparent, xnear)}
E ← E ∪ {(xnew, xnear}}

end if
end if

end for
end if

end forreturn G = (V,E)

• A* expanded significantly more nodes in complex envi-
ronments. In these environments, decreasing the heuristic
constant resulted in slightly better performance.

• RRT* did not always necessarily find the most optimal
route, but was still relatively efficient.

• RRT* took too long for the maps maze and monza. Most
likely due to complex environment (100k+ samples). If
paths not provided in the report, their run time informa-
tion and paths can be found here.

• RRT* parameters needed to be tuned so the path would
not phase through walls. Some maps had thinner walls
than others.

• Both algorithms tended to trace the edge plane of an
obstacles, mainly due to to the heuristics forcing the path
to remain as close to the goal as possible.

Parameters for each map and algorithm is specified per section.

https://github.com/motion-planning/rrt-algorithms
https://github.com/motion-planning/rrt-algorithms
https://drive.google.com/drive/folders/1vcaPGESjbCgmZueyo_KN34000QTuyL89?usp=sharing

A. Single Cube Environment
heuristic constant: 1, Nodes expanded: 14457, Planning

took: 0.8325889110565186 sec, Path length: 13

edge length: 0.1, intersection check length: 0.1, path length:
8, runtime: 0.4259, 71 samples.

B. Flappy Bird Environment
heuristic constant: 1, Nodes expanded: 22478, Planning

took: 1.235600233078003 sec, Path length: 32

edge length = 0.1, intersection check length = 0.1, path
length: 27, runtime: 5.722, 3875 samples

C. Window Environment

heuristic constant: 1, Nodes expanded: 31205, Planning
took: 1.7627739906311035 sec, Path length: 31

edge length = 0.1, intersection check length = 0.1, path
length: 25, runtime: 1.493, 961 samples

D. Tower Environment

heuristic constant: 1, Nodes expanded: 31090, Planning
took: 1.731515884399414 sec, Path length: 41

edge length = 0.1, intersection check length = 0.1, path
length: 29, runtime: 16.174, 9487 samples

Fig. 1: Tower with A* (above) and RRT* (below)

E. Room Environment

heuristic constant: 1, Nodes expanded: 6102 Planning took:
0.34586501121520996 sec, Path length: 13

edge length = 0.05, intersection check length = 0.01, path
length: 16, runtime: 8.136, 4537 samples

F. Maze Environment

heuristic constant: 1, Nodes expanded: 221405, Planning
took: 12.49658489227295 sec, Path length: 81

Fig. 2: Room with A*

Fig. 3: Room with RRT*

Fig. 4: Maze with A*

G. Monza Environment

heuristic constant: 1, Nodes expanded: 12574, Planning
took: 0.6785778999328613 sec, Path length: 81

Fig. 5: Monza with A*

Fig. 6: Monza with RRT*

Fig. 7: Sampling trees on Monza with RRT*

Fig. 8: Computation info on Monza with RRT*

	Introduction
	Problem Statement
	Technical Approach
	Collision Checking
	Search-based Motion Planning
	Part 3: Sampling-based Motion Planning

	Results
	Single Cube Environment
	Flappy Bird Environment
	Window Environment
	Tower Environment
	Room Environment
	Maze Environment
	Monza Environment

