
Safe Trajectory Tracking with Optimal Control
Jay Paek

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, California
jpaek@ucsd.edu

Abstract—This report presents an investigation into safe tra-
jectory tracking for a ground differential-drive robot using
infinite-horizon stochastic optimal control. The project aims to
develop a control policy that enables the robot to track a
desired reference trajectory while avoiding obstacles. The study
explores two approaches: receding-horizon certainty equivalent
control (CEC) and generalized policy iteration (GPI). The CEC
method simplifies the stochastic problem into a deterministic one,
while the GPI approach directly addresses the stochastic nature
by discretizing the state and control spaces. Quantitative and
qualitative results are provided to compare the performance of
these methods in terms of computational complexity, tracking
error, and collision avoidance.

Index Terms—Robotics, dynamic programming, optimal con-
trol, searching, path-finding

I. INTRODUCTION

Trajectory tracking is a fundamental problem in robotics,
particularly for autonomous ground vehicles that must navi-
gate dynamic environments with obstacles. Ensuring precise
tracking of a reference trajectory while avoiding collisions is
crucial for the safe and efficient operation of such robots. This
report delves into the problem of infinite-horizon stochastic
optimal control for a ground differential-drive robot, aiming
to design a robust control policy that addresses the inherent
uncertainties in the robot’s motion.

The project focuses on a robot characterized by its position
and orientation, controlled by linear and angular velocity
inputs. The robot’s dynamics are modeled using a discrete-time
kinematic model that incorporates motion noise with Gaussian
distribution. The control inputs are restricted to specific ranges,
and the robot must navigate an environment with defined
obstacles, ensuring it remains within the free space while
tracking a reference trajectory.

II. PROBLEM FORMULATION

This project considers the problem of safe trajectory track-
ing for a ground differential-drive robot. The state of the robot
at discrete time t ∈ N is denoted by xt := (pt, θt), where
pt ∈ R2 represents the position and θt ∈ [−π, π) represents
the orientation of the robot. The control input ut := (vt, ωt)
consists of the linear velocity vt ∈ R and the angular velocity
(yaw rate) ωt ∈ R.

The discrete-time kinematic model of the differential-drive
robot, obtained from Euler discretization of the continuous-
time kinematics with a time interval ∆ > 0, is given by:

xt+1 =

[
pt

θt

]
+

∆cos(θt) 0
∆ sin(θt) 0

0 ∆

[
vt
ωt

]
+wt,

where wt ∈ R3 models the motion noise with a Gaus-
sian distribution N (0, diag(σ2)) and standard deviation σ =
[0.04, 0.04, 0.004]⊤ ∈ R3. The motion noise is assumed
to be independent across time and of the robot state xt.
The kinematic model defines the probability density function
pf (xt+1 | xt,ut) of xt+1 conditioned on xt and ut as the
density of a Gaussian distribution with mean xt + G(xt)ut

and covariance diag(σ2).
The control input ut is limited to an allowable set of linear

and angular velocities U := [0, 1]× [−1, 1]. The objective is to
design a control policy for the differential-drive robot to track
a desired reference position trajectory rt ∈ R2 and orientation
trajectory αt ∈ [−π, π) while avoiding collisions with obsta-
cles in the environment. There are two circular obstacles: C1

centered at (−2,−2) with a radius of 0.5 and C2 centered at
(1, 2) with a radius of 0.5. Let F := [−3, 3]2 \ (C1 ∪ C2)
denote the free space in the environment.

To facilitate the control design, we define an error state
et := (p̃t, θ̃t), where p̃t := pt−rt and θ̃t := θt−αt measure
the position and orientation deviation from the reference
trajectory, respectively. The equations of motion of the error
state are:

et+1 = xt+1 −
[
rt+1

αt+1

]
+wt.

We formulate the trajectory tracking with initial time τ
and initial tracking error e as a discounted infinite-horizon
stochastic optimal control problem:

V ∗(τ, e) = min
π

E

[∞∑
t=τ

γt−τ
(
p̃⊤
t Qp̃t + q(1− cos(θ̃t))

2

+ u⊤
t Rut

)∣∣∣∣eτ = e

]
,

where Q ∈ R2×2 is a symmetric positive-definite matrix defin-
ing the stage cost for deviating from the reference position
trajectory rt, q > 0 is a scalar defining the stage cost for
deviating from the reference orientation trajectory αt, and

R ∈ R2×2 is a symmetric positive-definite matrix defining
the stage cost for using excessive control effort.

III. TECHNICAL APPROACH

We will compare two different approaches for solving
the problem: (a) receding-horizon certainty equivalent con-
trol (CEC) and (b) generalized policy iteration (GPI). These
methods will be evaluated in terms of their ability to achieve
safe and accurate trajectory tracking in the presence of motion
noise and obstacles.

A. Certainty Equivalent Control
Certainty Equivalent Control (CEC) is a suboptimal control

scheme that applies, at each stage, the control that would be
optimal if the noise variables wt were fixed at their expected
values (zero in our case). The main attractive characteristic of
CEC is that it reduces a stochastic optimal control problem to
a deterministic optimal control problem, which can be solved
more effectively. Receding-horizon CEC, in addition, ap-
proximates an infinite-horizon problem by repeatedly solving
the following discounted finite-horizon deterministic optimal
control problem at each time step:

V ∗(τ, e) ≈ min
uτ ,...,uτ+T−1

q(eτ+T) (1)

+

τ+T−1∑
t=τ

γt−τ
(
p̃⊤
t Qp̃t + q(1− cos(θ̃t))

2 + u⊤
t Rut

)
(2)

subject to:

et+1 = g(t, e,u, 0), t = τ, . . . , τ + T − 1

ut ∈ U

p̃t + rt ∈ F

where q(e) is a suitably chosen terminal cost and g is an
error update function. The receding-horizon CEC problem is
now a non-linear program (NLP) of the form:

min
U

c(U,E)

subject to Ulb ≤ U ≤ Uub

hlb ≤ h(U,E) ≤ hub

where U := [u⊤
τ , . . . ,u

⊤
τ+T−1]

⊤ and E := [e⊤τ , . . . , e
⊤
τ+T]

⊤.
An NLP program can be solved by an NLP solver, such
as CasADi. Once a control sequence uτ , . . . ,uτ+T−1 is
obtained, CEC applies the first control uτ to the system,
obtains the new error state eτ+1 at time τ +1, and repeats the
optimization online to determine the control input uτ+1. This
online re-planning is necessary because the CEC formulation
does not take the effect of the motion noise into account.

The approach ensures that the control policy adapts at each
time step by solving a finite-horizon optimization problem,
thereby making the system more robust to changes and uncer-
tainties in the environment. However, it is crucial to note that
while CEC simplifies the problem by ignoring the stochastic
nature of the noise, it does not explicitly handle the effects of
motion noise, which may lead to suboptimal performance in
highly uncertain environments.

1) CEC Class Initialization: The CEC class is initialized
with the following parameters:

• horizon: The number of future time steps to consider
in the optimization problem.

• err: The initial error state, initialized to 0.
• time_step: The discrete time step size, set to 0.5.

We set the time horizon to 13 for the best performance.
2) Optimization Variables: The optimization variables are

defined with a CasADi symbolic variable. Each row in sol
represents the control inputs and the subsequent state, struc-
tured as:

• sol[i, 0]: Linear velocity vt.
• sol[i, 1]: Angular velocity ωt.
• sol[i, 2]: Next position xt.
• sol[i, 3]: Next position yt.
• sol[i, 4]: Next orientation θt.
3) Cost Function: The cost function is set up as follows:
• R: Control effort weighting matrix.
• Q: Position error weighting matrix.
• gamma: Discount factor, set to 0.6.
• q: Orientation error weighting scalar, set to 0.7.
The objective function includes terms for position error,

orientation error, and control effort as described in (1) and
(2). We will use

Q =

[
0.8 0
0 0.3

]
, R =

[
0.4 0
0 0.1

]
The logic behind these configurations come from the fact that
tight tracking in the y-direction could lead to collisions due
to the unsafe nature of the initial trajectory. The error in the
x-direction is prioritized to minimize error while allowing the
robot to keep up. As for the orientation error, it can be seen that
minimizing orientation error and x-direction error is sufficient
in keeping the robot in the correct trajectory. For the control
input minimizations, in order to encourage the robot to make
sharper turns, the cost for the angular velocity is lowered.
However, too much momentum can lead to collisions, hence
the higher cost for linear velocity.

4) Constraints: The motion model equality constraints en-
sure that the robot’s state evolves according to its kinematics.
We add an additional constraint that ensures the robot avoids
collisions with obstacles by penalizing states near the obstacle
center at (−2,−2) and (1, 2). We make it so that the motion
model equalty constraints are tight, with 0.0001 from each
other.

5) Bounds: The bounds for the optimization variables are
defined as follows:

• lb: Lower bounds for the optimization variables.
• ub: Upper bounds for the optimization variables.

The lower and upper bounds for the variables are set to ensure
the control inputs and states remain within allowable ranges.

• Linear velocity vt ∈ (0, 1).
• Angular velocity ωt ∈ (−1, 1).
• Next position xt ∈ (−3, 3).
• Next position yt ∈ (−3, 3).
• Next orientation θt ∈ R.

B. Generalized Policy Iteration

In this section, we present the formulation of the General-
ized Policy Iteration (GPI) algorithm to solve the stochastic
optimal control problem (3) directly. Since the state and
control spaces are continuous, we discretize them into a finite
number of grid points.

1) Discretization of State and Control Spaces: The state
space, consisting of position error p̃t = (x̃t, ỹt) and orienta-
tion error θ̃t, is discretized into (nt, nx, ny, nθ) grid points.
The control space, consisting of linear velocity vt and angular
velocity ωt, is discretized into (nv, nω) grid points. The state
space discretization is defined over the regions p̃ ∈ [−3, 3]2

and θ̃ ∈ [−π, π), while the control input space U is discretized
over the allowable set U := [0, 1]× [−1, 1].

Since θ̃ is an angle, wrap-around should be enforced in its
discretization. The position error p̃ and control input u are
discretized over the regions [−3, 3]2 and U , respectively. The
reference trajectory is periodic with a period of 100, so we set
nt = 100.

2) Transition Probabilities in the Discretized MDP: To cre-
ate transition probabilities in the discretized Markov Decision
Process (MDP), for each discrete state e and each discrete
control u, we choose the next grid points e′ around the mean
g(t, e,u, 0), where g represents the deterministic part of the
state transition. We evaluate the likelihood of the motion noise
N (0, diag(σ2)) at the chosen grid points and normalize the
probabilities so that the outgoing transition probabilities sum
to 1.

3) Safety Constraints: To account for safety constraints,
ensuring p̃t + rt ∈ F , we can either:

• Disallow transitions to states that may lead to collisions,
or

• Introduce an additional stage-cost term to penalize colli-
sions.

4) Pre-computation for Efficiency: To speed up compu-
tation, certain results can be pre-computed and stored for
downstream use. For example, the transition probabilities
pf (e

′ | e,u) can be pre-computed and stored in a matrix
of size (nt, nx, ny, nθ, nv, nω, 8, 4), considering 8 neighbors.
The same technique can be used for the stage cost ℓ(e,u) and
other relevant terms. Furthermore due to the sheer volume of
values to maintain, we will proceed with parallel computation
by using the Python ray library.

5) Generalized Policy Iteration: The GPI algorithm itera-
tively performs the following steps:

1. Policy Improvement: Given Vk(x), obtain a policy:

π(x) ∈ argmin
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [Vk(x

′)]
}
, ∀x ∈ X

2. Value Update: Given π(x) and Vk(x), compute:

Vk+1(x) = ℓ(x, π(x))+γEx′∼pf (·|x,π(x)) [Vk(x
′)] , ∀x ∈ X

Value Update is a single step of the iterative Policy Eval-
uation algorithm. GPI assumes the Value Update and Policy
Improvement steps are executed an infinite number of times
for all states, ensuring convergence.

IV. RESULTS

The Fig. 1 is the trajectory for the best performance of the
CEC algorithm with the following statistics:

• Total time: 9.282578945159912
• Average iteration time: 38.57044080893199 ms
• Final error trains: 122.46106030050775
• Final error rotation: 59.75442865267129
Fig. 2 is when the time horizon is increased to 30.
• Total time: 25.07937717437744
• Average iteration time: 104.39033508300781 ms
• Final error trains: 126.15584287968042
• Final error rotation: 70.41631007180045

Clearly, more foresight into the future trajectory isn’t neces-
sarily good. On the left hand side of Fig. 2, the robot fails
to make an optimal turn and forces itself to turn the opposite
direction in order to make up for the lost ground. Furthermore,
more time horizon requires more linearly more constraints for
the NLP. This would significantly increase computation time,
which is not very desirable for a online task.

Fig. 3 is when the angular error scalar is set to 2.
• Total time: 7.309280157089233
• Average iteration time: 30.34007449944814 ms
• Final error trains: 121.7834535355296
• Final error rotation: 67.25850716760307

Although yielding decent performance, the bottom left of the
trajectory can be seen to be sharp. At this moment, the arrow
hesitates to follow the trajectory and then turns clockwise in
order to realign with the trajectory. This is the main issue for
the angular error. Poor configurations would always lead to
such rapid turn arounds at the sharper turns. There is only
one configuration such that a smooth trajectory is possible,
which is Fig. 1.

In conclusion, for hyperparameter tuning for safety, it is
important to prioritize the realistic physical interactions that
the robot would face. Smooth trajectories at a slow pace will
always be more optimal than a faster unsafe travel.

There are no results for the GPI implementation.

V. ACKNOLWEDGEMENTS

Thank you to Professor Nikolay Atanasov and the ECE
276B staff for such a great quarter!

Fig. 1: Best configuration trajectory

Fig. 2: Time horizon set to 30

Fig. 3: Orientation error scale set to 2

	Introduction
	Problem Formulation
	Technical Approach
	Certainty Equivalent Control
	CEC Class Initialization
	Optimization Variables
	Cost Function
	Constraints
	Bounds

	Generalized Policy Iteration
	Discretization of State and Control Spaces
	Transition Probabilities in the Discretized MDP
	Safety Constraints
	Pre-computation for Efficiency
	Generalized Policy Iteration

	Results
	Acknolwedgements

