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Introduction: The Localization Problem

The primary goal of this project is to accurately determine the
position of a static landmark.
We aim to solve two main challenges:

1. Estimate the landmark’s true position, denoted by y∗.

2. Minimize the uncertainty of our estimate.

But there are two issues.

1. MLE can be intractable in high dimensions.

2. Quantifying uncertainty is hard between two drastically
different distributions.
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Problem Formulation

System Setup

• Landmark Ground Truth: y∗ =
[
4.7 −3.1

]⊤
• Agent Initial Position: x0 =

[
0 0

]⊤
• Prior Estimate of Landmark: N (µ0,Σ0)

• µ0 =
[
1 1

]⊤
• Σ0 =

[
5.5 −1.5
−1.5 5.5

]

Observation Model
The range measurement at step k is given by:

zk = h(xk) = ∥xk − y∗∥+ wk

where the noise wk is i.i.d. and follows a normal distribution,
wk ∼ N (0, σ2 = 2).



Introduction Motivation Methodology: Gaussian Flow Proof of Minimum Covariance Gradient Conclusion

Problem Formulation (cont.)

The simulate the following procedure.

Simulation Steps

1. Draw sample zk .

2. Update (µk ,Σk)→ (µk+1,Σk+1)

3. Move to xk+1

We are concerned about the optimal first step.
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Motivations and Applications

Real World Applications:

• Robotics

• Navigation

• Target Tracking

• Scientific Exploration

There exists other methods:

• Nonlinear Kalman Filter

• Particle Flow Filters
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Gaussian Flow via KL-Divergence
We approximate the posterior distribution p(·|z) with a Gaussian
q(·;µ,Σ). We then minimize the KL-Divergence DKL(q ∥ p) using
gradient flow.

Gradient Flow Dynamics

The updates for the mean µ and covariance Σ are:

µ̇ = −∇µDKL = −Σ−1Es∼q

[
(s − µ) ln p(s, z)

]
Σ̇ = −∇ΣDKL = −1

2

[
Σ−1 + Es∼q[∇2

s ln p(s, z)]
]

Hessian of Log-Likelihood

∇2
s ln p(z | s) =

z − ∥xk − s∥
σ2

Hh(s)−
1

σ2
gh(s)gh(s)

⊤

where gh(s) and Hh(s) are the gradient-transpose and Hessian of
the measurement function h(s) = ∥xk − s∥.
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Key Mathematical Tools

DKL = Es∼q

[
ln q(s)− ln p(s, z)

]
Theorem (Bonnet’s Theorem)

Let h(s) : Rd → R be a locally ACL and continuous function. The
following first-order identity holds:

∇µEs∼q[h(s)] = Es∼q[∇sh(s)] = Es∼q[Σ
−1(s − µ)h(s)]

Theorem (Price’s Theorem)

Let h(s) : Rd → R be continuously differentiable with its derivative
∇h(s) being locally ACL. The following second-order identity
holds:

∇ΣEs∼q[h(s)] =
1

2
Es∼q[∇2

sh(s)]
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Deriving ∇µDKL

Objective

We want to find the gradient of DKL

(
q(.) ∥ p(. | z)

)
with respect

to µ. We start with the objective function, ignoring constants:

DKL = Es∼q

[
ln q(s)− ln p(s, z)

]
Let h(s) = ln q(s)− ln p(s, z). Applying Bonnet’s Theorem:

∇µDKL = ∇µEs∼q[h(s)]

= Es∼q[Σ
−1(s − µ)h(s)]

= Σ−1Es∼q

[
(s − µ)(ln q(s)− ln p(s, z))

]
= Σ−1 (Es∼q[(s − µ) ln q(s)]− Es∼q[(s − µ) ln p(s, z)])



Introduction Motivation Methodology: Gaussian Flow Proof of Minimum Covariance Gradient Conclusion

Final Result for ∇µDKL

From the previous slide:

∇µDKL = Σ−1 (Es∼q[(s − µ) ln q(s)]− Es∼q[(s − µ) ln p(s, z)])

Simplification

We use the fact that for a Gaussian q ∼ N (µ,Σ):

• The term ln q(s) is a quadratic function of (s − µ).

• The odd moments of a centered Gaussian are zero.

This implies that the expectation Es∼q[(s − µ) ln q(s)] is zero.

Final Gradient Expression for µ

∇µDKL = −Σ−1Es∼q

[
(s − µ) ln p(s, z)

]
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Deriving ∇ΣDKL

Objective

Now we find the gradient of DKL = Es∼q

[
ln q(s)− ln p(s, z)

]
with

respect to Σ.

Using the linearity of the gradient operator and applying Price’s
Theorem with h(s) = ln q(s)− ln p(s, z):

∇ΣDKL = ∇ΣEs∼q[ln q(s)]−∇ΣEs∼q[ln p(s, z)]

=
1

2
Es∼q[∇2

s ln q(s)]−
1

2
Es∼q[∇2

s ln p(s, z)] (Price’s Thm.)

Final Gradient Expression for Σ

Substituting this identity gives:

∇ΣDKL = −1

2

(
Σ−1 + Es∼q[∇2

s ln p(s, z)]
)
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Decomposition of the Hessian Term
The final step is to expand the term Es∼q[∇2

s ln p(s, z)].
The joint log-probability is ln p(s, z) = ln p(s) + ln p(z |s).

∇ΣDKL = −1

2

(
Σ−1 + Es∼q[∇2

s ln p(s)] + Es∼q[∇2
s ln p(z |s)]

)
Simplifying with the Prior

The prior p(s) is a Gaussian N (µ0,Σ0). Its log-pdf is quadratic in
s, so its Hessian is constant:

∇2
s ln p(s) = ∇2

s

(
C − 1

2
(s − µ0)

⊤Σ−1
0 (s − µ0)

)
= −Σ−1

0

Final Form for Covariance Gradient Flow

Σ̇ = −∇ΣDKL =
1

2

(
(Σ−1 − Σ−1

0 ) + Es∼q[∇2
s ln p(z |s)]

)



Introduction Motivation Methodology: Gaussian Flow Proof of Minimum Covariance Gradient Conclusion

Monte-Carlo Gaussian Flow Algorithm

We approximate the expectations in the gradient flow dynamics
using Monte Carlo sampling.

Algorithm Monte-Carlo-based Gaussian Flow

1: Input: Prior N (µ0,Σ0), observation z , number of steps N,
number of samples n, step size η.

2: for k = 0, . . . ,N − 1 do
3: Draw samples s1, . . . , sn ∼ N (µk ,Σk)
4: ∇µDKL ≈ −Σ−1

k
1
n

∑n
i=1

[
(si − µk) ln p(si , z)

]
5: ∇ΣDKL ≈ −1

2

[
(Σ−1

k − Σ−1
0 ) + 1

n

∑n
i=1∇2

s ln p(z | si )
]

6: µk+1 ← µk − η∇µDKL

7: Σk+1 ← Σk − η∇ΣDKL

8: end for
9: Return: µN ,ΣN
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Result: Gaussian Flow Estimation
The Gaussian flow update successfully fuses the prior information
with the new measurement to produce a more accurate posterior
estimate.

Figure: Two trajectories where Comparison of the prior (blue), the MLE
estimate (red), and the Gaussian flow posterior estimate (purple). Plot
on the right has increased noise.
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Result: The Challenge of Ambiguity
The Gaussian flow can converge to incorrect estimates,
highlighting the challenge of local minima in non-linear problems.

Figure: Two trajectories where the ground truth landmark is at 2y∗. The
flow converges to two different locations, demonstrating ambiguity.
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The Optimal Control Question

Question: Using our current model, is there a movement x1, I can
make AFTER my first flow update (µ0,Σ0)→ (µ1,Σ1), that is
better than other movements (on average).

Our Strategy: Choose the next location x1 that maximizes the
initial expected reduction in uncertainty ∥Σ(T )− Σ(0)∥2, to
quantify “reduction in uncertainty”

But ∥Σ(T )− Σ(0)∥2 is an an easily accessible value. We perform
numerical experiments to find a trend for min

x∈X
Ez1 [∥Σ̇(0; x1)∥2]
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Result: Chasing minimum ∥Σ̇∥

We fix µ0 =
[
1 1

]⊤
,Σ0 = 0.1I . The following are normalized

heatmaps of Ez1 [∥Σ̇(0; x1)∥2] for positions in x1 ∈ [−2, 2]× [−2, 2].

Figure: y = µ0 Figure: y = −µ0
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Result: Chasing minimum ∥Σ̇∥

We fix µ0 =
[
1 1

]⊤
,Σ0 = 0.1I . We are evaluating for positions

in [−2, 2]× [−2, 2].

Figure: y = e1 Figure: y = −e2
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Step 1: Initial Rate of Change
The Gaussian flow dynamics for the covariance matrix Σ are given
by:

Σ̇(z1) = −∇ΣDKL =
1

2

(
(Σ−1 − Σ−1

0 ) + Es∼q[∇2
s ln p(z1|s)]

)
At time t = 0
We are interested in the initial change. At this point, our
variational distribution q is exactly the prior distribution
q0 = N (µ0,Σ0).
Substituting Σ = Σ0 into the equation, the first term vanishes:

Σ̇(z1)|t=0 =
1

2

(
(Σ−1

0 − Σ−1
0 ) + Es∼q0 [∇2

s ln p(z1|s)]
)

This simplifies to:

Σ̇(z1)|t=0 =
1

2
Es∼q0 [∇2

s ln p(z1|s)]
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Step 1 (cont.): Expectation over Measurements
The Hessian of the log-likelihood ln p(z1|s) = C − (z1−∥x1−s∥)2

2σ2 is:

∇2
s ln p(z1|s) =

1

σ2

[
z1 − ∥x1 − s∥
∥x1 − s∥

I − z1
∥x1 − s∥3

(s − x1)(s − x1)
⊤
]

Marginalizing out the measurement z1
We take the expectation with respect to the measurement model
z1 ∼ N (∥x1 − y∥, σ2), for which E[z1] = ∥x1 − y∥. Let’s define:
• dy = ∥x1 − y∥2 (distance from agent to true landmark)

• d(s) = ∥x1 − s∥2 (distance from agent to a hypothesised
landmark s)

The expected initial rate of change is then:

Ez1 [Σ̇] =
1

2σ2
Es∼q0

[
dy − d(s)

d(s)
I − dy

d(s)3
(s − x1)(s − x1)

⊤
]



Introduction Motivation Methodology: Gaussian Flow Proof of Minimum Covariance Gradient Conclusion

Step 2: Approximating the Expectation

The expression for Ez1 [Σ̇] is still complex due to the expectation
over s ∼ q0. We can simplify this with a key assumption.

Assumption 1

The prior distribution is concentrated far away from the agent’s
position x1.

Justification: If the prior belief µ0 is far from x1, then for most
samples s from q0, the vector s − x1 points in roughly the same
direction as µ0 − x1. In particular

Es∼q0 [d(s)] ≈ d(µ0)
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Step 2 (cont.): The Approximated Gradient

Applying the approximation Es∼q0 [f (s)] ≈ f (µ0) to our expression
for Ez1 [Σ̇]:

Ez1 [Σ̇] ≈
1

2σ2

[
dy − d(µ0)

d(µ0)
I − dy

d(µ0)3
(µ0 − x1)(µ0 − x1)

⊤
]

=
1

2σ2

[(
dy

d(µ0)
− 1

)
I − dy

d(µ0)

(µ0 − x1)(µ0 − x1)
⊤

∥µ0 − x1∥2

]
=

1

2σ2

[
dy

d(µ0)

(
I − (µ0 − x1)(µ0 − x1)

⊤

d(µ0)2

)
− I

]
where d(µ0) = ∥x1 − µ0∥2.
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Finding the Optimal Condition

Let’s analyze the approximated rate of change:

Ez1 [Σ̇] ≈ C

[
∥x1 − y∥2
∥x1 − µ0∥2

P⊥
µ0
− I

]
where P⊥

µ0
= I − (µ0−x1)(µ0−x1)⊤

∥x1−µ0∥22
is a projection matrix onto the

space perpendicular to the direction (µ0 − x1).

Assumption 2

To avoid trivial solutions (e.g., moving directly to µ0), we assume
that the true landmark y and the prior mean µ0 are both
sufficiently far from the agent.
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The Optimal Condition for Agent Movement

Because we are working in R2, algebraically computing the
eigenvalues of ∥Ez1 [Σ̇(z1)]∥ is possible.

∥Ez1 [Σ̇(z1)]∥ = max
(
1,
∣∣∣ dy
d(µ)

− 1
∣∣∣)

So we have approximate optimality if∣∣∣ ∥x − y∥
∥x − µ0∥

− 1
∣∣∣ < 1

In particular

∥x − y∥
∥x − µ0∥

= 0 =⇒ ∥x1 − y∥2 = ∥x1 − µ0∥2
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Future Steps

• More insight in Rd .

• Extend to different kinds of observation models or a general
model.

• Deduce a optimal control algorithm for more time stamps
without oracle assumption (using the previous result).
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