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1 Reflection and Refraction

Objective: Understand the behavior of light as it pass through different mediums.

1.1 Ray Approximation

Figure 1: Ray approxi-
mations and wavefronts.

Learn about the mathematical equations that describe reflection and re-
fraction.

Light travels in a straight line in a homogeneous medium until it en-
counters a boundary between two different media. A ray of light is an
imaginary line drawn along the direction of propagation of the light. A
wavefront is a surface passing through points of a wave that have the
same phase. The rays, corresponding to the direction of the wave motion,
are perpendicular to the wavefronts

1.2 Reflection

When light encounters a boundary with a second medium, part of this
incident light is directed back into the first medium, and this is known as
reflection. If the boundary is a smooth surface, the reflection is known
as specular reflection. This means all the reflected rays will be parallel to
one another. Otherwise if the boundary is not smooth, then the reflection
is called defuse reflection (See Figure 2a). The normal to a surface is a

(a) Specular/Diffuse reflection (b) Reflection

Figure 2: Depictions of reflection.

line which is perpendicular to the surface at given point. The incident
ray makes an angle θ1 with the normal. The reflected ray makes an angle θ′1 with the normal. The
angle of reflection is equal to the angle of incidence: θ1 = θ′1 (See Figure 2b).

It is important to note that reflection always occurs when light interacts with different mediums.

1.3 Refraction

When light, propagating through a transparent medium, encounters a boundary leading into another
transparent medium, part of the light is reflected, and part of the light passes into the second medium.
The ray that enters the second medium is bent at the boundary. This bending of the ray is called
refraction. The incident ray, the reflected ray, and the refracted ray (and the normal too) all lie in
the same plane. The angle of refraction θ2 depends on the refractive indices of the both media.
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Figure 3: Refraction

The angle of refraction (θ2 in Figure 3) depends on the material and
the angle of incidence

sin θ1
sin θ2

=
v1
v2

The index of refraction, or refractive index, n, of a medium is a unitless
value defined as

n =
speed of light in a vacuum

speed of light in the medium
=

c

v

Note that for a vacuum, v = c, so n = 1. Otherwise, n > 1. We can derive
Snell’s law at this point.

Let n1 and n2 be the refractive index of the first and second medium,
respectively.

sin θ1
sin θ2

=
v1
v2

=
c/n1

c/n2
=

n2

n1
=⇒ n1 sin θ1 = n2 sin θ2

Consider the two cases in Figure 5. In Figure 5a, observe that the angle of refraction, θ2, is less
than the angle of incidence, θ1. On the other hand, in Figure 5b, has the inequality relation to be
flipped.

Simply put, in terms of index of refraction, we have that the medium with the greater index of
refraction has a lower angle of refraction. It is important to understand the relationships between all
of these values. Consider the following example. Let θ1 and n1 be constant. Then we have

n1 sin θ1︸ ︷︷ ︸
constant

= n2 sin θ2

Furthermore sin θ ≈ θ for 0 ≤ θ ≤ π
2 . Then we get that approximately n2θ2 = η, for some constant η

determined by n1 and θ1. What does this mean mathematically though? We can that given a fixed
first medium and angle of incidence, the angle of refraction is inversely proportion to the refractive
index.

With a similar strategy, we can show that θ1 is directly proportional to θ2 if n1, n2 are kept constant
i.e. increasing θ1 will increase θ2 and decreasing θ1 will decrease θ2.

(a) v1 > v2 or n1 < n2 (b) v1 < v2 or n1 > n2

Figure 4: Two cases of refraction.
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Figure 4 shows how the angle made with the normal is smaller in the medium with a higher
refractive index. We will prove the result for Figure 4a. The proof for 4b is similar.
Proposition: If n1 < n2, then θ1 > θ2.
Proof : Recall the following proportions:

sin θ1
sin θ2

=
n2

n1

Since n2 > n1 > 0, so
n2

n1
> 1. Then

sin θ1
sin θ2

> 1 =⇒ sin θ1 > sin θ2. sin is a monotone increasing

function in the domain (0, π
2 ). This means that for any x, y between 0 and

π

2
, if sinx > sin y then

x > y. We can now conclude that θ1 > θ2. ■
Consider the physical example in Figure 5, where we shine a laser through a prism.

Figure 5: Light path of
laser through a prism.

Ray 1 is the incident ray. Ray 2 is the reflected ray. Ray 3 is refracted into
the crystal. Ray 4 is internally reflected in the crystal. Ray 5 is refracted
as it enters the air from the crystal.

Another interesting example is to observe that Ray 2 and Ray 5 look
parallel. It is left as an exercise to the reader to prove that these two rays
are indeed parallel given that the prism is a perfect rectangular prism.

Just kidding, I will prove it here.
Proposition: Ray 2 and Ray 5 are parallel.
Proof : Let θ1 denote the angle of incidence of the laser (Ray 1) and θ2
denote the angle of the first reflection, Ray 2.

Let θ3 be the refracted angle of Ray 3. Given that the top and bottom
surfaces are parallel, this must mean that all lines perpendicular to these

parallel lines are parallel to each other. We can draw all of the normals between Rays (1,2), (3,4), and
(4,5), which is depicted with the magenta arrows.

Ray 3 is a transversal of the left and middle vertical lines. By the alternate interior angles theorem,
θ3 = θr and θ′r = θ4. Furthermore, θr = θ′r by the properties of reflection of a smooth surface. By the
transitive property and the congruent set of angles, we have θ3 = θ4.

We know that (θ1, θ3) and (θ4, θ5) satisfy Snell’s law. But with what we had earlier, n2 sin θ3 =
n2 sin θ4. So

n1 sin θ1 = n2 sin θ3 = n2 sin θ4 = n1 sin θ5 =⇒ sin θ1 = sin θ5

Since θ1 and θ5 can only be values between 0 and π
2 , there must be unique values that satisfy this

equality (in other words, we can say that the sin function is bijective in (0, π
2 )). Necessarily, we must

have θ1 = θ5. With reflection, θ1 = θ2 = θ5.
Finally, let the top surface be a transversal. The angles of θ2 and θ5 are congruent, so Ray 2 and

Ray 5 are parallel by the converse of the corresponding angles theorem. This concludes the proof. ■

Figure 6: Depiction of laser’s path through prism with labeled angles.
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1.4 Wavelength and Frequency

Recall that the velocity of a wave is the product of the wavelength λ and frequency f i.e. v = λf .
When light travels through different mediums, what happens to these values?

The equation for the energy of a photon, a light particle, is E = hf , where h is Planck’s constant.
From this, we can deduce that the frequency of a wave remains constant as it travels through different
mediums since energy must be conserved. With velocity changing and frequency remaining constant,
we must have that the wavelength changes!

With this new idea in mind, we can derive another proportional relationship related to Snell’s law.
λ1 and λ2 are the wavelength of the light in the first and second medium.

sin θ1
sin θ2

=
v1
v2

=
λ1f

λ2f
=

λ1

λ2

Another point to note is that the velocity of light through a medium changes as wavelength changes.
Essentially, velocity has a dependency on wavelength. The intuition regarding this relationship is from
the fact that different wavelengths interact with the atoms in a different manner.

1.5 Total Internal Reflection

Total internal reflection can occur when light attempts to move from a medium with a high index
of refraction to a medium with a lower index of refraction. A particular angle of incidence will result
in angle of refraction of 90◦. This angle of incidence is called the critical angle. For angles of incidence
greater than the critical angle, the beam is entirely reflected at the boundary. This ray obeys the Law
of Reflection. Total internal reflection occurs only when light attempts to move from a medium of
higher index of refraction to a medium of lower index of refraction.

1.6 Supplementary Materials

• 3blue1brown’s video: ‘4 questions about the refractive index | Optics puzzles 4’
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2 Diffraction

3 Spectrometer

4 Polarization

5 Solar Cell
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6 Quantum Cryptography

6.1 Introduction to Cyptography

Cryptography is the technique for converting information to an unintelligible form that can only be
deciphered by authorized parties. Encrypting is altering the data in a way to hide the true message.

Figure 7: Light path of laser through a
prism.

Decrypting is basically undoing the encryption to reveal
the true message. A key is a piece of information such
that it helps encrypt or decrypt the message. The goal is
to only let authorized parties have access to the key. Thus,
the encrypted message will make no sense to those without
the key.

Especially in the digital world, we encode each letter
to a specific binary string i.e. a sequence of eight 1’s and
0’s. Let’s take a look at a simple example where we our
encoding algorithm is simply adding a binary string to each
character’s respective binary string.

Before we proceed, let’s do an example of adding binary
numbers.

Example: Let the key be 11010100.
True message N O Encrypted message N O

6.2 Quantum Key Distribution

This time, we will make our key by using photons. Ac-
cording to quantum physics, one cannot create a copy of
a single photon with the same state (polarization state in
this case). This is based on the no-cloning theorem.

6.3 Linear Algebra Background

TO-DO

6.4 BB84 Protocol

The idea is to generate a secure key that only the sender
and receiver have acces to. Single photons transmitted and measured at randomly selected polarization
states are used to create a secure key.

Hotizontal and vertical polarizations make an orthogonal basis. −45 and +45 polarizations make
an orthogonal basis.

In our experiment, a short pulse of laser light is used instead of a single photon. When a 45◦ light
is sent through a polarizing beam splitter, both detectors will record light, In this case, one of the
polarizations states will be randomly selectly electronically.

Alice will send a message in either −45, 0, 45, 90 using the waveplate. Bob will receive the message
with a waveplate that can be configured to either 0, 45. Bob will use the polarized beam splitter to
project the lasers onto two different panels.

6.5 Additional Resources

• More cool cryptography videos

– ‘The Unbreakable Krytos Code’ by LEMMiNO
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https://youtu.be/jVpsLMCIB0Y?si=iz3ymsZeVeTxjSNf


– ‘Cicada 3301:An Internet Mystery’ by LEMMiNO
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https://youtu.be/I2O7blSSzpI?si=LjOGk8fANoRkc-n2


7 Waves

7.1 Wave Equation

A wave is a function of both space x and time t.

E = A sin(ωt− kx)

A is called the amplitude of the wave and has the same units as E. ω is the angular-frequency
(rads/sec). If the frequency (in Hz) is f , then the angular frequency is ω = 2πf . k is the phase

constant or wave number (radians/meter). It is defined to be k =
2π

λ
, where λ is the wavelength.

Why is this equation important. Well, remember that the displacement from the equilibrium of a
wave differs at every point in time and space. This equation captures all of that.

It may be challenging to think about this mutlivariable function. We can do the same thing as
we did in Section 1, where we fix a specific variable. Note that we are work in a “3D” environment
where the x-axis is space, y-axis is time, and z-axis is the distance from the equilibrium. Let’s take an
example wave f(x, y) = sin(x+ πy).

Figure 8: f(x, y) = sin(x+ πy)

Fix x = 0. Then we are taking a slice of the cubic cake that is perpendicular to the x-axis. This is
the action of fixing an x. Mathematically, we have

f(0, y) = sin(πy)

It is clear that the function is only a function of time. The function that we get will be the outlined
curve on the left-hand-side (the thin sine wave). Convince yourself that the equation of that curve is
f(0, y) = sin(πy). With this approach, we can see that fixing x, a point in space, we get a snapshot of
how one point in space fluctuates.

We can do a similar approach by fixing time t = 0. Graphically, we are making a slice perpendicular
to the y-axis and is essentially the outline of the curve on the right-hand-side surface.

Here is a physical example. I’m sure everyone has seen the rope being shaken up and down (in a
sinusoidal manner) so that it looks like a wave. Imagine taking a photo of the shaking rope. That is
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fixing a point in time y. Now imagine looking at a specific section of the rope and just watching how
that specific point of the rope changes in location. That is fixing a point in space x. In both scenarios.

Now imagine you change x, but still consider as a constant.

f(y) = sin( x︸︷︷︸
constant

+πy)

x just behaves as a phase shift here. One way to think about this is that as we wake snapshots of the
wave at

Figure 9: f(x, y) = sin(x+ πy)

The darker parts of the graph are the crests, or the highest point, of the wave, while the lighter
parts are the troughs, or the lowest point.

Take a cut horizontally at y = 0, and consider the cross section. Then take another cut at x = 0.01.
Then do it again for x = 0.02. This is like taking a 100 fps video of the shaking rope example. Observe
that the crests of the wave are move towards the left. This is the direction of propagation. You
can do a similar approach by fixing the cuts vertically to different points in time.

I just mostly dumped as many examples as possible to mathematically interpret waves. Hopefully
this helped.

7.2 Polarization of Light

An EM wave is a vector equantity. That means that is has a magnitude and direction. Let’s take a
look at the general form of a wave fluctuations in a field.

E⃗(r⃗, t) = P⃗ cos(ωt− k⃗ · r⃗)

where · operation is the dot product. This the same exact deal with the previous section, but the
position, amplitude, and wave numbers are vectorized. P is the polarization vector. k is the wave
numbers in each coordinate direction, and r⃗ is the position vector.
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Let’s take a simple example. Let let P⃗ be a 2-dimensional vector and k⃗, and r⃗ be scalars. This
means that the wave propagates in 2-dimension.

E⃗(r, t) = P⃗ cos(ωt− kr)

This looks pretty familiar. Let me break it down a little more. If P =

[
Px

Py

]
, then

[
Ex

Ey

]
=

[
Px cos(ωt− kr)
Py cos(ωt− kr)

]
Observe that each component itself is just a normal wave, just as in the previous section. This equation
characterizes the polarization of a wave with respect to time and multi-dimensional space.

(a)

[
x(y)
z(y)

]
=

[
sin y
sin y

]
(b) Polarized light visualization.

In the figure above, we can see that there are fluctuations in the x and z-direction with a dependency
on y. The second subfigure shows what the wave will look like when you add the red and blue
components together. The slant of this curve is the polarization.

An electric field that has uniform properties at all points across an infinite plane (does not vary on
that plane at any time point), is called a plane wave.

8 Stuff

Euler’s Formula eiθ.
Linear polarized light can be represented as

E⃗ = E0 cos(ωt− kx) = ℜ{E0axe
iωt−kx}

where ℜ denotes the real part of the complex number.

E⃗ = E0axse
i(ωt−kx) = E0axse

i(ωt−k0nx)

And

[
eik0nfL

eik0nsL

]
.
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https://youtu.be/cQSPgIlI3pQ
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