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Notation

• α : I → Rn is a parameterized curve from an interval to Rn. The domain need not be bounded.

• If α : R → R2, then α(t) = (x(t), y(t)). If α : R → R3, then α(t) = (x(t), y(t), z(t)). Of course,
x, y, z : R → R.

• If α : R → Rn and n > 3, then αi : I → R is the ith component of the parametrized curve.

• |.| : Rn → R is the Euclidean norm, unless specified otherwise.

1-2 Exercises

Question 1

Find a parametrized curve α(t) whose trace is the circle x2 + y2 = 1 such that α(t) runs clockwise
around the circle with α(0) = (0, 1).

Solution: α(t) = (sin(t), cos(t))

Question 2

Let α(t) be a parametrized curve which does not pass through the origin. If α(t0) is the point of the
trace of α closest to the origin and α′(t0) ̸= 0, show that the position vector α(t0) is orthogonal to
α′(t0).

Solution:

d

dt

(
|α(t)|2

)
=

d

dt

( n∑
i=1

αi(t)
2
)

=

n∑
i=1

2αi(t)α
′
i(t)

= 2⟨α(t), α′(t)⟩

|α(t)| is a minimum at t = t0, so
d

dt

(
|α(t)|2

)
= 0.

Question 3

A parametrized curve α(t) has the property that its second derivative α′′(t) is identically zero. What
can be said about α?
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Solution: A simple calculation yields that
d

dt

(
|α′(t)|2

)
= 2⟨α′(t), α′′(t)⟩ = 0. So the speed of the curve

is constant.

Question 4

Let α : I → R3 be a parametrized curve and let v ∈ R3 be a fixed vector. Assume that α′(t) is
orthogonal to v for all t ∈ I and that α(0) is also orthogonal to v. Prove that α(t) is orthogonal to v
for all t ∈ I.

Solution: Without loss of generality, pick i = 1, 2, 3.

d

dt
⟨αi(t), v⟩ = ⟨α′

i(t), v⟩ = 0

Let t ∈ I. By the Fundamental Theorem of Calculus:

⟨αi(t), v⟩ =
∫ t

0

⟨α′
i(τ), v⟩dτ + ⟨α(0), v⟩ = 0

Question 5

Let α : I → R3 be a parametrized curve, with α′(t) ̸= 0 for all t ∈ I. Show that |α(t)| is a nonzero
constant if and only if α(t) is orthogonal to α′(t) for all t ∈ I.

Solution: ( =⇒ ): Let t ∈ I. |α(t)| ≠ 0 is a constant function that is differentiable if and only if

d

dt

(
|α(t)|2

)
= 2⟨α(t), α′(t)⟩ = 0 ⇐⇒ ⟨α(t), α′(t)⟩ = 0

With the chain of necessary and sufficient conditions, we are done.
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1-3 Exercises

Question 1

Show that the tangent lines to the regular parametrized curve α(t) = (3t, 3t2, 2t3) make a constant
angle with the line y = 0, z = x.

Solution: The tangent line of the parametrized curve is α′(t) = (3, 6t, 6t2). Pick a point on the given
line: v = (1, 0, 1).

cos θ =
α′(t) · v
|α′(t)||v|

=
3 + 6t2√

2
√
9 + 36t2 + 36t4

=
1√
2

And thus θ must be constant w.r.t. t =
π

2
.

Note: we use the regularity of the curve when we divide by |α′(t)|.

Question 2

A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described
by a point of the circumference of the disk is called a cycloid.

Part (a)

Obtain a parametrized curve α : R → R2 the trace of which is the cycloid, and determine its singular
points.

Solution: α(t) = (t− sin t, 1− cos t). α′(t) = (1− cos t, sin t). The singular points are when |α′(t)| = 0.

|α′(t)| = 1− 2 cos t+ cos2 t+ sin2 t = 2− 2 cos t = 0 =⇒ t = 2πn, n ∈ Z

Part (b)

Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Solution:

∫ 2π

0

|α′(t)|dt =
∫ 2π

0

(2− 2 cos t)dt = (2t− 2 sin t)2π0 = 4π

Question 3

Let 0A = 2a be the diameter of a circle S1 and 0y and AV be the tangents to S1 at 0 and A,
respectively. A half-line r is drawn from 0 which meets the circle S1 at C and the line AV at B. On
0B mark off the segment 0p = CB. If we rotate r about 0, the point p will describe a curve called the
cissoid of Diocles. By taking 0A as the x axis and 0Y as the y axis, prove that

Part (a)

The trace of

α(t) =

(
2at2

1 + t2
,
2at3

1 + t2

)
, t ∈ R,

is the cissoid of Diocles (t = tan θ).
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Solution: Let the slope of the half-line r be t = tan θ. Compute when r intersects S1. The equation
of the upper semicircle is y =

√
a2 − (x− a)2 =

√
2ax− x2

tx =
√
2ax− x2

t2x2 = 2ax− x2

(1 + t2)x2 = 2ax

(1 + t2)x = 2a

x =
2a

1 + t2

Let α(t) = (x(t), y(t)). We can obtain x(t), and then y(t):

x(t) = 2a− x =
2at2

1 + t2

y(t) = tx(t) =
2at3

1 + t2

Part (b)

The origin (0, 0) is a singular point of the cissoid.

Solution:

x′(t) =
4at(1 + t2)− 2at2(2t)

(1 + t2)2
=

4at

(1 + t2)2

y′(t) =
6at2(1 + t2)− 2at3(2t)

(1 + t2)2
=

2at4 + 6at2

(1 + t2)2

x′(0) = 0, y′(0) = 0 =⇒ |α′(t)| = 0

Part (c)

As t → ∞, α(t) approaches the line x = 2a, and α′(t) → (0, 2a). Thus, as t → ∞, the curve and its
tangent approach the line x = 2a; we say that x = 2a is an asymptote to the cissoid.

Solution:

lim
t→∞

x(t) = 2a, lim
t→∞

y(t) = ∞, lim
t→∞

x′(t) = 0, lim
t→∞

y′(t) = 2a

Question 4

Let α : (0, π) → R2 be given by

α(t) =

(
sin t, cos t+ log tan

t

2

)
,

where t is the angle that the y axis makes with the vector α′(t). The trace of α is called the tractrix
(Fig. 1-9). Show that

Part (a)

α is a differentiable parametrized curve, regular except at t =
π

2
.
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Solution: Let x(t) = sin t, y(t) = cos t+ log tan t
2 . We will assume that log is the natural logarithm.

x′(t) = cos t

y′(t) = − sin t+
1

2 tan t
2 cos

2 t
2

= − sin t+
1

2 sin t
2 cos

t
2

= − sin t+
1

sin t

Both functions are well-behaved for t ∈ (0, π).

|α′(t)| =
√

cos2 t+ sin2 t+
1

sin2 t
− 2 =

√
1

sin2 t
− 1 =

√
1− sin2 t

sin2 t
=

√
cot2 t = | cot t|

And clearly |α′(t)| ≠ 0, except when t =
π

2

Part (b)

The length of the segment of the tangent of the tractrix between the point of tangency and the y axis
is constantly equal to 1.

Solution: From the question, we know that the slope of the tangent line is ± cot t (parity is irrelevant).
Construct a line tangent to x(t) and compute the intersection at the y-axis. Obtain the y-displacement.
Let ℓ be the length of the segment.

ℓ =
√
x2(t) + (x(t) cot t)2

=
√
sin2 t+ cos2 t

= 1

Question 5

Let α : (−1,∞) → R2 be given by

α(t) =
( 3at

1 + t3
,
3at2

1 + t3

)
Prove that

Part (a)

For t = 0, α is tangent to the x axis.

Solution: α′(t) =
( (3a)(1 + t3)− (3at)(3t2)

(1 + t3)2
,
(6at)(1 + t3)− (3at2)(3t2)

(1 + t3)2

)
, α′(0) = (3a, 0)

Part (b)

As t → ∞, α(t) → (0, 0) and α′(t) → (0, 0).

Solution: Trivial from limits of rational functions.

Part (c)

Take the curve with the opposite orientation. Now, as t → −1, the curve and its tangent approaches
the line x+ y + a = 0.
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Solution: Since t ∈ (−1,∞), we have t → −1+.

lim
t→−1+

(1 + t)3

1 + t3
= lim

t→0+

(1 + (t− 1))3

1 + (t− 1)3
= lim

t→0+

t3

t3 − 3t3 + 3t
= lim

t→0+

t2

t2 − 3t+ 3
= 0

Then we can compute the following limit:

lim
t→−1

x(t) + y(t) = lim
t→−1

3at2 + 3at

1 + t3

= lim
t→−1

at3 + 3at2 + 3at+ a

1 + t3
− a

= lim
t→−1

a
(1 + t)3

1 + t3
− a

= −a

Question 6

Let α(t) = (aebt cos t, aebt sin t), t ∈ R, a and b constants, a > 0, b < 0, be a paremetrized curve.

Part (a)

Show that as t → ∞, α(t) approaches the origin 0, spiraling around it. (because of this, the trace of
α is called the logarithmic spiral; see Fig. 1-11).

Solution: lim
t→∞

x(t) = lim
t→∞

y(t) = 0

Part (b)

Show that α′(t) → (0, 0) as t → ∞ and that

lim
t→∞

∫ t

t0

|α′(t)|dt

is finite; that is, α has finite arc length in [t0,∞).

Solution: x′(t) = abebt cos t− aebt sin t, y′(t) = abebt sin t+ aebt cos t.

lim
t→∞

∫ t

t0

|α′(t)|dt = lim
t→∞

∫ t

t0

√
x′(t)2 + y′(t)2dt

= lim
t→∞

∫ t

t0

√
a2b2e2bt + a2e2btdt

= a
√

b2 + 1 lim
t→∞

∫ t

t0

ebtdt

= −a
√
b2 + 1

b
ebt0 < ∞

Question 7

A map α : I → R3 is called a curve of class Ck if each of the coordinate functions in the expression
α(t) = (x(t), y(t), z(t)) has continuous derivatives up to order k. If α is merely continuous, we say that
α is of class C0. A curve α is called simple if the map α is one-to-one. Thus, the curve in Example 3
of Sec. 1-2 is not simple.
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Let α : I → R3 be a simple curve of class C0. We say that α has a weak tangent at t = t0 ∈ I if the
line determined by α(t0 + h) and α(t0) has a limit position when h → 0. We say that α has a strong
tangent at t = t0 if the line determined by α(t0 + h) and α(t0 + k) has a limit position when h, k → 0.
Show that

Part (a)

α(t) = (t3, t2), t ∈ R, has a weak tangent but not a strong tangent at t = 0.

Solution:

x

y
= lim

h→0

x(h)− x(0)

y(h)− y(0)
= lim

h→0
h = 0

So the weak tangent is x = 0. For the strong tangent, consider taking h = −k.

y

x
= lim

h→0

y(h)− y(k)

x(h)− x(k)
= lim

h→0

0

x(h)− x(k)
= 0

Which offers that the limit position is y = 0. If the strong tangent exists, then it must be equal to the
weak tangent. However, we found a conflicting limit position. Therefore, there is no strong tangent.

Part (b)

If α : I → R3 is of class C1 and regular at t = t0, then it has a strong tangent at t = t0.

Solution: α(t) is regular at t = t0, so |α′(t0)| ̸= 0. Then x′(t0), y
′(t0), z

′(t0) are not all 0. We can
obtain the following relations to describe line defined by points at t = h and t = k.

x− x(k)
x(h)−x(k)

h−k

=
y − y(k)
y(h)−y(k)

h−k

=
z − z(k)
z(h)−z(k)

h−k

Note that x, y, z are variables defining the tangent line. Consider the limit of the LHS:

lim
h,k→t0

x− x(k)
x(h)−x(k)

h−k

=
x− x(t0)

x′(t0)

which clearly exists. By the equivalence across all x, y, z, we must have a strong tangent.

Part (c)

The curve given by

α(t) =

{
(t2, t2), t ≥ 0,

(t2,−t2), t ≤ 0,

is of class C1 but not of class C2. Draw a sketch of the curve and its tangent vectors.

Solution: α′(0) is a C0 function.

α′(t) =

{
(2t, 2t), t ≥ 0

(2t,−2t), t ≤ 0
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Question 8

Let α : I → R3 be a differentiable curve and let [a, b] ⊂ I be a closed interval. For every partition

a = t0 < t1 < · · · < tn = b

of [a, b], consider the sum

n∑
i=1

|α(ti)− α(ti−1)| = l(α, P ), where P stands for the given partition. The

norm |P | of a partition P is defined as

|P | = max(ti − ti−1), i = 1, . . . , n.

Geometrically, l(α, P ) is the length of a polygon inscribed in α([a, b]) with vertices in α(ti). The point
of the exercise is to show that the arc length of α([a, b]) is, in some sense, a limit of lengths of inscribed
polygons.

Prove that given ε > 0 there exists δ > 0 such that if |P | < δ then∣∣∣∣∣
∫ b

a

|α′(t)|dt− l(α, P )

∣∣∣∣∣ < ε

Solution: Let ε > 0 and continue the inequality after applying the triangle inequality.∣∣∣∣∣
∫ b

a

|α′(t)|dt− l(α, P )

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

|α′(t)|dt−
n∑

i=1

|α′(ti)|
n

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

|α′(ti)|
n

− l(α, P )

∣∣∣∣∣ (1)

Observe the RHS. |α′(t)| is a continuous function thus Riemann integrable. Hence, we can always
take a Riemann integral approximation such that the absolute difference is very small. More formally,
∀ε > 0,∃N1 such that

n > N1 =⇒

∣∣∣∣∣
∫ b

a

|α′(t)|dt−
n∑

i=1

|α′(ti)|
n

∣∣∣∣∣ < ε

2

where we can force ti = a+
b− a

n
i without loss of generality. For the second term,∣∣∣∣∣

n∑
i=1

|α′(ti)|
n

− l(α, P )

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

1

n
|α′(ti)| −

n∑
i=1

1

n

|α(ti)| − |α(ti−1)|
1
n

∣∣∣∣∣
=

n∑
i=1

1

n

∣∣∣∣∣|α′(ti)| −
|α(ti)| − |α(ti−1)|

1
n

∣∣∣∣∣

By the mean value theorem, ∀i,∃si ∈ (ti−1, ti) such that
|α(ti)| − |α(ti−1)|

1
n

= |α′(si)|. Furthermore,

we have ∀ε > 0,∃N2 such that if n > N2, then
∣∣∣|α′(ti)| − |α′(si)|

∣∣∣ < ε

2
.

=

n∑
i=1

1

n

∣∣|α′(ti)| − |α′(si)|
∣∣ ≤ n∑

i=1

1

n

ε

2
≤ ε

2

Revisiting (1), take δ < 1
N where N > max{N1, N2}, and we have bounded the RHS by ε. This

concludes the proof. ■
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Question 9

Part (a)

Let α : I → R3 be a curve of class C0 (cf. Exercise 7). Use the approximation by polygons described
in Exercise 8 to give a reasonable definition of arc length of α.

Solution: Trivial by l(α, P ) defined in question 8 and selection of partition P .

Part (b)

A Nonrectifiable Curve. The following example shows that, with any reasonable definition, the arc
length of a C0 curve in a closed interval may be unbounded. Let α : [0, 1] → R2 be given as α(t) =
(t, t sin(π/t)) if t ̸= 0, and α(0) = (0, 0). Show, geometrically, that the arc length of the portion of the
curve corresponding to 1/(n+ 1) ≤ t ≤ 1/n is at least 2/(n+ 1

2 ). Use this to show that the length of

the curve in the interval 1/N ≤ t ≤ 1 is greater than 2
∑N

n=1 1/(n+1), and thus it tends to infinity as
N → ∞.

Solution: α′(t) =
(
1, sin

π

t
− π

t
cos

π

t

)
.

|α′(t)| =
√
1 +

(
sin

π

t
− π

t
cos

π

t

)2

≥
∣∣∣ sin π

t
− π

t
cos

π

t

∣∣∣
We will take an alternative approach with modified bounds t ∈

( 1

n+ 1
2

,
1

n

)
.

∫ 1
n

1
n+1

|α′(t)|dt ≥
∫ 1

n

1

n+1
2

∣∣∣ sin π

t
− π

t
cos

π

t

∣∣∣dt
≥

∣∣∣ ∫ 1
n

1

n+1
2

(
sin

π

t
− π

t
cos

π

t

)
dt
∣∣∣

=
∣∣∣(t sin π

t

) 1
n

1

n+1
2

∣∣∣
=

∣∣∣ 1

n+ 1
2

∣∣∣
And thus, ∫ 1

1
N

|α′(t)|dt =
N−1∑
n=1

∫ 1
n

1
n+1

|α′(t)|dt ≥
N−1∑
n=1

∣∣∣ 1

n+ 1
2

∣∣∣ ≥ N−1∑
n=1

∣∣∣ 1

n+ 1

∣∣∣.
Question 10

(Straight Lines as Shortest.) Let α : I → R3 be a parametrized curve. Let [a, b] ⊂ I and set α(a) = p,
α(b) = q.

Part (a)

Show that, for any constant vector v, |v| = 1,

(q − p) · v =

∫ b

a

α′(t) · v dt ≤
∫ b

a

|α′(t)| dt.
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Solution: Apply the fundamental theorem of calculus and Cauchy-Schwarz.

(q − p) · v = (α(b)− α(a)) · v =

∫ b

a

α′(t)dt · v =

∫ b

a

(α′(t) · v)dt ≤
∫ b

a

|α′(t)||v|dt ≤
∫ b

a

|α′(t)|dt

Part (b)

Set v =
q − p

|q − p|
and show that |α(b) − α(a)| ≤

∫ b

a
|α′(t)|dt; that is, the curve of shortest length from

α(a) to α(b) is the straight line joining these two points.

Solution: Taking v as mentioned, (q−p) ·v =
|q − p|2

|q − p|
= |q−p| = |α(b)−α(a)|. And the result follows

from (a).
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