Chapter 1 - Curves
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Notation

e «: ] — R™ is a parameterized curve from an interval to R™. The domain need not be bounded.

o If «: R — R?, then a(t) = (x(t),y(t)). If a: R — R3, then a(t) = (x(t),y(t), 2(t)). Of course,
z,y,2: R —R.

o If «: R — R"” and n > 3, then a; : I — R is the ith component of the parametrized curve.

e |.| : R™ — R is the Euclidean norm, unless specified otherwise.

1-2 Exercises

Question 1

Find a parametrized curve a(t) whose trace is the circle 2 + y? = 1 such that a(t) runs clockwise
around the circle with «(0) = (0, 1).
)

Solution: a(t) = (sin(t), cos(t)

Question 2

Let a(t) be a parametrized curve which does not pass through the origin. If «(tg) is the point of the
trace of « closest to the origin and o/(t9) # 0, show that the position vector a(ty) is orthogonal to

O/(to).

Solution:

|a(t)] is @ minimum at ¢ = #g, so a(\a(t)ﬁ) =0.

Question 3

A parametrized curve «(t) has the property that its second derivative o/ (t) is identically zero. What
can be said about a?



d
Solution: A simple calculation yields that pn (Jo/(t)*) = 2{c/(t), " (t)) = 0. So the speed of the curve

is constant.

Question 4

Let a : I — R? be a parametrized curve and let v € R3 be a fixed vector. Assume that o/(t) is
orthogonal to v for all ¢t € I and that «(0) is also orthogonal to v. Prove that «(t) is orthogonal to v
foralltel.

Solution: Without loss of generality, pick i = 1,2, 3.

d /

Zplai(t),v) = {ai(t),v) =0

Let t € I. By the Fundamental Theorem of Calculus:
t
(@lt),0) = [ (ailr),o)dr + (a(0).0) =0
0

Question 5

Let a : I — R3 be a parametrized curve, with o/(t) # 0 for all ¢t € I. Show that |a(t)| is a nonzero
constant if and only if «(¢) is orthogonal to o/(t) for all ¢t € I.

Solution: (= ): Let t € I. |a(t)] # 0 is a constant function that is differentiable if and only if

%(\a(t)lz) =2(a(t),a’(1)) =0 < (a(t),d/(t)) =0

With the chain of necessary and sufficient conditions, we are done.



1-3 Exercises

Question 1

Show that the tangent lines to the regular parametrized curve a(t) = (3t,3t2,2t3) make a constant
angle with the line y =0, z = .

Solution: The tangent line of the parametrized curve is o/ (t) = (3, 6t, 6t2). Pick a point on the given
line: v =(1,0,1).

cosf = ot) v _ 3+ 667 _ L
lo/(O]Iv]  2v9 + 3662 4 36t2 /2
And thus 8 must be constant w.r.t. ¢t = g

Note: we use the regularity of the curve when we divide by |a/(t)].

Question 2

A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described
by a point of the circumference of the disk is called a cycloid.

Part (a)

Obtain a parametrized curve o : R — R? the trace of which is the cycloid, and determine its singular
points.

Solution: a(t) = (t —sint,1 —cost). o/(t) = (1 —cost,sint). The singular points are when |/ (t)| = 0.

|o/(t)] =1 —2cost + cos’t +sin’t =2 —2cost =0 = t=2mn,n €7

Part (b)

Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

2m 2m
Solution: / |/ (t)|dt = / (2 — 2cost)dt = (2t — 2sint)™ = 4
0 0

Question 3

Let 0A = 2a be the diameter of a circle S' and Oy and AV be the tangents to S' at 0 and A,
respectively. A half-line r is drawn from 0 which meets the circle S' at C' and the line AV at B. On
0B mark off the segment Op = CB. If we rotate r about 0, the point p will describe a curve called the
cissoid of Diocles. By taking 0A as the z axis and 0Y as the y axis, prove that

Part (a)

The trace of

2at?  2at3
aft) = (HtQ7Ht2> , teR,

is the cissoid of Diocles (¢t = tan ).



Solution: Let the slope of the half-line 7 be ¢ = tan§. Compute when r intersects S'. The equation
of the upper semicircle is y = \/a? — (z — a)2 = 2az — 22

tr =/ 2ax — 22

2

t22% = 2ax — x

1+ t*)2? = 2ax

(1+t*)z = 2a
2a

r=-——7
14 ¢2

Let a(t) = (z(t),y(t)). We can obtain z(¢), and then y(t):

2at?
z(t) =2a —x = T
2at?
t) =tx(t) =
y(t) = talt) = 1
Part (b)
The origin (0,0) is a singular point of the cissoid.
Solution:
(1) = dat(1+ %) —2at*(2t)  dat
- (1+12)2 S (1 +41¢2)2
J(t) = 6at?(1 + t2) — 2at3(2t) _ 2at* + 6at>
(14 t2)2 (14¢2)2
2'(0) =0,5/(0) =0 = [d/(t)| =0
Part (c)

As t — oo, a(t) approaches the line z = 2a, and o/(¢t) — (0,2a). Thus, as t — 0o, the curve and its
tangent approach the line z = 2a; we say that x = 2a is an asymptote to the cissoid.

Solution:

. o . _ . / _ : / —
Jim o(t) = 20, Jim y(t) = o0, lim /(1) =0, Jim /() = 20

Question 4

Let o : (0,7) — R? be given by
. 4
aft) = (Smt,cost + log tan 2) ,

where ¢ is the angle that the y axis makes with the vector o/ (¢). The trace of « is called the tractriz
(Fig. 1-9). Show that

Part (a)

T
« is a differentiable parametrized curve, regular except at ¢t = 5



Solution: Let x(t) = sint, y(t) = cost + log tan % We will assume that log is the natural logarithm.

2/ (t) = cost
'(t) int + ! int+ ! int+ !
= —snt4+ —- — = —gint+ ————— = —sint + —
Y 2tan £ cos? § 2sin £ cos § sint

Both functions are well-behaved for ¢ € (0, 7).

1 1 1—sin®t
o/(t)|:\/c052t—|—sin2t—|— — —2:\/ —1= ﬁz\/cotzt:h:ott\

sin“ ¢ sin® sin? ¢t

And clearly |o/(t)| # 0, except when ¢ = g

Part (b)

The length of the segment of the tangent of the tractrix between the point of tangency and the y axis
is constantly equal to 1.

Solution: From the question, we know that the slope of the tangent line is + cot ¢ (parity is irrelevant).
Construct a line tangent to z(¢) and compute the intersection at the y-axis. Obtain the y-displacement.
Let £ be the length of the segment.

€= \/22(t) + (x(t) cot t)2

= V/sin?t + cos? ¢

=1

Question 5

Let o : (—1,00) — R? be given by
3at  3at? )
L+637 1413

at) = (

Prove that

Part (a)
For t = 0, « is tangent to the x axis.

(3a)(1+t3) — (3at)(3t%) (6at)(1+ t3) — (3at?)(3t?)
(1+1t3)2 ’ (1+13)2

Solution: o (t) = ( ),0/(0) = (3a,0)

Part (b)
Ast — oo, at) = (0,0) and o/(t) — (0,0).

Solution: Trivial from limits of rational functions.

Part (c)

Take the curve with the opposite orientation. Now, as t — —1, the curve and its tangent approaches
the line z +y +a = 0.



Solution: Since t € (—1,00), we have t — —17.

(1+41t)3 . 1+ (-1 . t3 . t2
im —=lm— = lim ————— = lim ———— =0
to—1+t 143 oot 14+ (¢ —1)3 ot t3 =33 4+3t  t0tt2—3t+3
Then we can compute the following limit:

. 3at? + 3at
i (1) +0(0) = tim S
. at®*+3at? +3at+a
= lim —a
t——1 143

Question 6

Let a(t) = (ae® cost,ae’ sint),t € R, a and b constants, a > 0,b < 0, be a paremetrized curve.

Part (a)

Show that as ¢ — oo, «(t) approaches the origin 0, spiraling around it. (because of this, the trace of
a is called the logarithmic spiral; see Fig. 1-11).

Solution: tllglox(t) = tlg(r)loy(t) =0

Part (b)
Show that o'(t) — (0,0) as t — oo and that

t—o0

t
lim / |’ (t)]dt
to

is finite; that is, « has finite arc length in [tg, 00).

Solution: x'(t) = abe® cost — ae sint,y'(t) = abeb sint + ae cost.

t t
lim / o/ (£)|dt = Tim / VE O 1y (02t
to t

t—o0 t—o0 o

t
= lim / Va2b2e2bt 4 q2e2bt
to

t—o0

t
avb? +11lim / ebtdt
to

t—o0

RGeS

L g
e’ < oo
b

Question 7

A map o : I — R? is called a curve of class C* if each of the coordinate functions in the expression
a(t) = (z(t),y(t), 2(t)) has continuous derivatives up to order k. If « is merely continuous, we say that
a is of class CY. A curve « is called simple if the map « is one-to-one. Thus, the curve in Example 3
of Sec. 1-2 is not simple.



Let a: I — R? be a simple curve of class C°. We say that o has a weak tangent at ¢t = ¢y € I if the
line determined by a(to + h) and «(to) has a limit position when h — 0. We say that « has a strong
tangent at ¢ = t if the line determined by a(to + h) and «a(to + k) has a limit position when h,k — 0.
Show that

Part (a)
a(t) = (t3,t?), t € R, has a weak tangent but not a strong tangent at t = 0.
Solution:
() Rk C) TR
y  h—=oy(h) —y(0) hr—o
So the weak tangent is = 0. For the strong tangent, consider taking h = —k.
y _oyh) —yk) 0
z WS0z(h) —x(k)  hsoxz(h) — z(k)

Which offers that the limit position is y = 0. If the strong tangent exists, then it must be equal to the
weak tangent. However, we found a conflicting limit position. Therefore, there is no strong tangent.

Part (b)
If a : I — R? is of class C! and regular at t = tg, then it has a strong tangent at ¢t = t.

Solution: «(t) is regular at t = tg, so |&/(tg)| # 0. Then z'(to),y (to), 2’ (to) are not all 0. We can
obtain the following relations to describe line defined by points at t = h and t = k.

v—alk)  y—yk)  z—z(k)
z(h)—z(k) — yW)—yk)  z(h)—=z(k)
h—k h—k h—k

Note that x,y, z are variables defining the tangent line. Consider the limit of the LHS:

lim = x(k) _ = x(to)
hok—to w z'(to)

which clearly exists. By the equivalence across all x,y, z, we must have a strong tangent.

Part (c)
The curve given by

t =
a( ) (tza 7t2)7 t S 07

{(t2,t2), t>0,

is of class C'! but not of class C?. Draw a sketch of the curve and its tangent vectors.

Solution: o'(0) is a C° function.

2t, 2 >
o (t) = (2t.2t), t=20
(2t,—2t), t<0



Question 8

Let o : I — R3 be a differentiable curve and let [a,b] C I be a closed interval. For every partition

a=ty<t1 <---<tp,=b

of [a, b], consider the sum Z |a(t;) — alti—1)| = (e, P), where P stands for the given partition. The
i=1
norm |P| of a partition P is defined as

|P\:max(ti—ti,1), i:17...7n.

Geometrically, (o, P) is the length of a polygon inscribed in «([a, b]) with vertices in «(¢;). The point
of the exercise is to show that the arc length of a([a, b)) is, in some sense, a limit of lengths of inscribed

polygons.
Prove that given € > 0 there exists 6 > 0 such that if |P| < § then

/b |/ (t)|dt — (o, P)| < €

Solution: Let € > 0 and continue the inequality after applying the triangle inequality.

/|a )dt — I(a, P) (t)|dt — Z'O‘ | Z‘O‘ l(a, P)

Observe the RHS. |&/(t)] is a continuous function thus Riemann integrable. Hence, we can always
take a Riemann integral approximation such that the absolute difference is very small. More formally,

Ve > 0,dN; such that
b n /
t;
[ lawia-y ot
n
@ i=1

—a
1 without loss of generality. For the second term,
n

(1)

€

2

n>N =

where we can force t; = a +

Z ‘Oz i)l —l(a, P)| = Z#O‘/(’fi” _ Z%M(lﬁz” —1a(ti—1)|‘

=1 i=1 n

ja(t:)] — latioy)| ‘

—la’(t:)| - T

n

t;)| — ti—
lat)] = latts-)l _ |’ (s;)|. Furthermore,

By the mean value theorem, Vi, 3s; € (¢;-1,t;) such that

1
we have Ve > 0, 3N, such that if n > Ny, then ‘|0/(ti)| — |o/(si)|‘ <

=3l - el <3

Revisiting (1), take § < % where N > max{N;, N2}, and we have bounded the RHS by . This
concludes the proof. B

£
5

1\3\0)

<<
2~

3\’—‘



Question 9
Part (a)

Let a: I — R3 be a curve of class C° (cf. Exercise 7). Use the approximation by polygons described
in Exercise 8 to give a reasonable definition of arc length of «.

Solution: Trivial by {(«, P) defined in question 8 and selection of partition P.

Part (b)

A Nonrectifiable Curve. The following example shows that, with any reasonable definition, the arc
length of a C° curve in a closed interval may be unbounded. Let « : [0,1] — R? be given as a(t) =
(t,tsin(n/t)) if t # 0, and «(0) = (0,0). Show, geometrically, that the arc length of the portion of the
curve corresponding to 1/(n+1) <t < 1/n is at least 2/(n + 3). Use this to show that the length of
the curve in the interval 1/N <t <1 is greater than 2 ZnN:1 1/(n+1), and thus it tends to infinity as
N — oo.

Solution: o(t) = (1, sing - %cos %)

2
|o/(t)—\/1+<sin7r7rcos7r) z‘sinzfﬁcosz
t t t t t t

1 1
We will take an alternative approach with modified bounds t € (7 7).
n

+3'n
1 1
n n T w T
/ |a'(t)|dt2/ )sinf—fcosf‘dt
1 1 t t t
n+1 n+%
1
T w T
> (sin———cosf>dt’
1 t t t
nt i
1
L T\
= (tsmf)
t 1
nti
-
n—!—%

And thus,

1 N-1 .1 N-1 1 N-1 1
"(t)|dt = / 1 (b)|dt > ‘ ‘> ‘ .
[ wla= 3 [ o= 3 | =] = ¥ |5
N n=1"Y n+1 n=1 2 n=1

Question 10

(Straight Lines as Shortest.) Let o : I — R3 be a parametrized curve. Let [a,b] C I and set a(a) = p,
a(b) =q.

Part (a)

Show that, for any constant vector v, |v| = 1,

b b
(q—p)~v=/ o/(t)-vdtg/ |’ (t)] dt.



Solution: Apply the fundamental theorem of calculus and Cauchy-Schwarz.

b b b b
(@—p) v =(a(d) - aa)-v= / of (t)dt v = / (o/(t) - v)dt < / o () Jeldt < / o (1)t

Part (b)
Set v = |Z :i and show that |a(b) — a(a)| < fab |/ (¢)|dt; that is, the curve of shortest length from
a(a) to a(b) is the straight line joining these two points.
2
Solution: Taking v as mentioned, (¢—p)-v = ||q i = |g—p| = |a(b) — a(a)|. And the result follows
q—p

from (a).

10
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