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Problem 1

Part (a)

Let X be a set and let I be an index set. Suppose that for each i ∈ I, we have a topology Ti on X.
Prove that T =

⋂
i∈I Ti is also a topology on X. Prove that T ≤ Ti for all i ∈ I, and in fact, if there is

another topology T ′ such that T ′ ≤ Ti for all i ∈ I, then T ′ ≤ T (i.e., T is the ”greatest lower bound”
of all of the Ti).

Solution: First we prove that T =
⋂

i∈I Ti is also a topology on X.

• Clearly, ∅, X ∈ Ti,∀i ∈ I, so ∅, X ∈ T .

• Let J be an index set and Aj ∈ T , j ∈ J , then ∀j ∈ J we have Aj ∈ Ti,∀i ∈ I. Let i ∈ I, then⋃
j∈J

Aj ∈ Ti since each Ti is a topology. We picked i arbitrarily, so it follows that
⋃
j∈J

∈ Ti,∀i ∈ I.

Hence,
⋃
j∈J

Aj ∈ T

• Let J be a finite index set and Aj ∈ T , j ∈ J , then ∀j ∈ J we have Aj ∈ Ti,∀i ∈ I. Let

i ∈ I, then
⋂
j∈J

Aj ∈ Ti since each Ti is a topology. We picked i arbitrarily, so it follows that⋂
j∈J

∈ Ti,∀i ∈ I. Hence,
⋂
j∈J

Aj ∈ T

With the four axioms of a topology, T is a topology.

Let i ∈ I, then we have that T ⊆ Ti by definition. Therefore, T ≤ Ti,∀i ∈ I.

Let T ′ be a topology on X such that T ′ ≤ Ti,∀i ∈ I. Assume that T is a strict subset of T ′ i.e.
T < T ′. Then T ′ − T is nonempty, and we can take any A ∈ T ′ − T . Such A does not belong to
T = ∩i∈ITi, which means that ∃j ∈ I such that A /∈ Tj , which contradicts that fact that A ∈ T ′. ■

Part (b)

Let X = {1, 2, 3} and find two topologies T1 and T2 on X such that T1 ∪ T2 is not a topology.

Solution: T1 = {∅, {1}, X}, T2 = {∅, {2}, X}. ■
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Problem 2

Let X be a topological space with topology T , let A be a subset of X, and let B be a subset of A, i.e.,
B ⊆ A ⊆ X. There are two potentially different topologies we can put on B: First, B is a subset of X
so we can give it the subspace topology TB . Second, we can give A the subspace topology TA from X,
and then give B the subspace topology (TA)B that comes from being a subset of A. Prove that they
are actually the same: TB = (TA)B .

Solution: Let E ∈ TB , then E = B ∩ U for some U ∈ T . Since B ⊆ A, we have B = A ∩ B. Then
E = (A ∩B) ∩ U = B ∩ (A ∩ U) ∈ (TA)B . Hence, TB ⊆ (TA)B .

Other direction follows similarly. Let E ∈ (TA)B , then E = (U ∩ A) ∩ B for some U ∈ T . But
E = (U ∩A) ∩B = U ∩ (A ∩B) = U ∩B ∈ TB . So, (TA)B ⊆ TB . ■
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Problem 3

Let X be a topological space and let A be a subspace. Prove that if U is open in A, then for any other
subset B of X, U ∩B is open in the subspace A ∩B.

Solution: U is open in A, so U = A ∩ V for some V ∈ T (the topology on X). It is clear that
U ∩B = (A ∩B) ∩ V ∈ TA∩B . U ∩B is open. ■
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Problem 4

Let X be a topological space and let A,B be subsets of X.

Part (a)

Prove that A ∪B = A ∪B.

Solution: By definition, A =
⋂
i∈I

Ei, B =
⋂
j∈J

Fj , where each I, J indexes over all of the closed sets such

that A ⊆ Ei, B ⊆ Fj , respectively.

A ∪B =
(⋂

i∈I

Ei

)
∪
( ⋂

j∈J

Fj

)
=

⋂
(i,j)∈I×J

Ei ∪ Fj

For any choice of (i, j), Ei ∪ Fj is a closed set that contains A ∪B. Therefore A ∪B ⊆ A ∪B.

The other direction follows nicely. We have A,B ⊆ A ∪B, so A,B ⊆ A ∪B. ■

Part (b)

Prove that A ∩B ⊆ A ∩B.

Solution: Proceed similarly as in (a). We have

A ∩B =
(⋂

i∈I

Ei

)
∩
( ⋂

j∈J

Fj

)
=

⋂
(i,j)∈I×J

Ei ∩ Fj

For any choice of (i, j), Ei ∩ Fj is a closed set that contains A ∩B. Therefore A ∩B ⊆ A ∩B. ■

Part (c)

Give an example where A ∩B is not equal to A ∩B.
[Hint: There is an example where X = R and A,B are open intervals.]

Solution: With X = R, consider A = (−1, 0), B = (0, 1). Then A ∩B = ∅ and A ∩B = {0}. ■
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Problem 5

Let X be a topological space and let A be a subset of X. Prove the identities

X −A = (X −A)◦, X −A◦ = X −A.

Solution: The solution is trivial for A = ∅, X. Consider the when it is not.

For the first statement, we have by definition that (X −A)◦ =
⋃
i∈I

Ei, where I indexes over every open

set Ei, such that Ei ⊆ X −A. X −A is an open set that is contained in X −A, so X −A ⊆ (X −A)◦.

Now, assume that X − A ⊂ Ei for some i ∈ I. Then Ei − (X − A) = Ei ∩ A is nonempty. Ei ∩ A =
Ei ∩ (A ∪ A′) = (Ei ∩ A) ∪ (Ei ∩ A′) is nonempty. Since Ei ⊆ X − A, we have that Ei ∩ A is empty
and that Ei ∩ A′ must be nonempty. Take any p ∈ Ei ∩ A′ and Ei is a neighborhood of p, which is a
limit point. p is a limit point if and only if every neighborhood of p intersects A. Ei must intersect A.
We have a contradiction.

For the second statement, it is equivalent to proving A◦ = X−X −A, which is just the first statement.
Replace A with X −A, then (X −A)◦ = X −A

5



Problem 6

Let I be an index set and suppose we have a topological space Xi for each i ∈ I. Let X be the disjoint
union of all of the Xi:

X =
⊔
i∈I

Xi.

Formally, this is the set of pairs {(i, x) | i ∈ I, x ∈ Xi}. Let T be the collection of subsets U of X such
that for all i ∈ I, the set Ui = {x ∈ Xi | (i, x) ∈ U} is open in Xi. Prove that T is a topology for X.

Solution: If U = ∅, then ∀i ∈ I we have Ui = ∅, which makes Ui open in Xi. ∅ ∈ T .

If U = X, then ∀i ∈ I we have Ui = Xi, which makes Ui open in Xi. X ∈ T .

Let J be an index set, and Uj open ∀j ∈ J . By definition, we have that (Uj)i is open in Xi,∀i ∈ I.

Let i ∈ I and consider
( ⋃

j∈J

Uj

)
i
, which is just

⋃
j∈J

(Uj)i, a union of sets that are open in Xi. Thus( ⋃
j∈J

Uj

)
i
is open in Xi,∀i ∈ I, making it open in X.

Proceed with a setup similar to the previous section, but this time let J be a finite index set. Let i ∈ I

and consider
( ⋂

j∈J

Uj

)
i
, which is just

⋂
j∈J

(Uj)i, a finite intersection of sets that are open in Xi. Thus( ⋂
j∈J

Uj

)
i
is open in Xi,∀i ∈ I, making it open in X. ■
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Problem 7

Let X = Z be the set of integers. For each pair of integers m,n such that m ̸= 0, define the subset

bm,n = {mx+ n | x ∈ Z}.

Part (a)

Prove that the collection of bm,n (with m ̸= 0 but no restriction on n) form a basis for a topology,
which we will just call T .
[Remark: Since each bm,n is infinite, all non-empty open sets in T are infinite.]

Solution: Let x ∈ Z and x ∈ bm,n ∩ bp,q. Then x = my + n = pz + q for some y, z ∈ Z. Then we have
x ∈ bmp,x and bmp,x ⊆ bm,n ∩ bp,q. ■

Part (b)

Prove that each bm,n is both open and closed in T .

Solution: bm,n is vacuously open by construction. Furthermore, Z − bm,n =

m⋃
i=1,i̸=n

bm,i, which open.

bm,n is also closed. ■

Part (c)

Prove that
Z− {1,−1} =

⋃
p

bp,0

where the union is over all prime numbers p.

Solution: Proof is trivial if x is prime or composite or 0. If x = 1,−1, then assumemp = x =⇒ m =
x

p
for some m, where p is prime. But p > 1,∀p, so |m| < 1, which can not be true. ■

Part (d)

Using the above facts, conclude that there must be infinitely many primes.
[Hint: use proof by contradiction.]

Solution: Assume there are finitely many primes. Then Z−{−1, 1} is nonempty and clopen. Z−{−1, 1}
is open, but can’t be closed since {−1, 1} is not open. A contradiction. ■
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Problem 8

Part (a)

Let X be a topological space. Given a subset A, define f(A) = A, so that we have a function
f : 2X → 2X which we call closure. Prove that f satisfies these 4 properties:

(i) f(∅) = ∅.

(ii) For all A ⊆ X, we have A ⊆ f(A).

(iii) For all A ⊆ X, we have f(A) = f(f(A)).

(iv) For all A,B ⊆ X, we have f(A) ∪ f(B) = f(A ∪B).

Solution: For (i), ∅ is closed, so the closure is itself.
For (ii), we have A ⊆ A.
For (iii), f(A) = A, which is closed. The closure of a closed set is itself, so A = f(A).
For (iv), see Problem 4 Part (a). ■

Part (b)

Conversely, suppose that X is a set and we are given a function g : 2X → 2X satisfying the 4 conditions
above. Prove that there is a unique topology on X so that f is the closure function of this topology.
In particular, this says that we could define topologies in terms of functions satisfying (i)–(iv) instead
of with open sets.

Solution: From (iv), we get monotonicity of f . Let A ⊂ B, then A ∪B = B. And thus

f(A) ⊆ f(A) ∪ f(B) = f(A ∪B) = f(B)

Let T = {A ⊆ X : X − A = f(X − A)}. f(∅) = ∅ =⇒ f(X − X) = X − X =⇒ X ∈ T .
X − ∅ = X ⊆ f(X) and f(X) ∈ 2X ⇐⇒ f(X) ⊆ X. f(X) = X, so ∅ ∈ T .

Let I be an index set and Ai ∈ T ,∀i ∈ I. From (ii), X −
⋃
i∈I

Ai ⊆ f
(
X −

⋃
i∈I

Ai

)
. Then we have

X −
⋃
i∈I

Ai =
⋂
i∈I

(X −Ai) =
⋂
i∈I

f(X −Ai) since Ai ∈ T ,∀i ∈ I. Observe that

f
(⋂

i∈I

(X −Ai)
)
⊆ f(X −Aj),∀j ∈ I =⇒ f

(⋂
i∈I

(X −Ai)
)
⊆

⋂
i∈I

f(X −Ai) = X −
⋃
i∈I

Ai

And thus, X −
⋃
i∈I

Ai ⊆ f
(
X −

⋃
i∈I

Ai

)
, making T closed under arbitrary union.

Let I be a finite index set and Ai ∈ T ,∀i ∈ I. Then f
(
X−

⋂
i∈I

Ai

)
= f

(⋃
i∈I

(X−Ai)
)
=

⋃
i∈I

f(X−Ai) =⋃
i∈I

(X −Ai) = X −
⋂
i∈I

Ai. T is closed under finite intersection. Therefore, T is a topology.

Now we show that f(A) = A,∀A ⊆ X. Let A ⊆ X. The solution is trivial if A = ∅, X. If not, then
we have f(A) = f(f(A)), so A = X − B for some B ∈ T . This makes f(A) closed and it contains A.
A ⊆ f(A). But then A is the intersection of all closed sets Ei such that A ⊆ Ei. By monotonicity,
f(A) ⊆ f(Ei) = Ei,∀i ∈ I =⇒ f(A) ⊆ A. Therefore f(A) = A, and f is the closure function of T .

Uniqueness follows from construction where there exists unique A such that A = f(A) = A, which
defined a unique collection of open sets. Essentially, we have defined a topology by first defining the
closed sets. ■
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Part (c)

Find and prove the analogous statement for the function that takes a subset to its interior.

Solution: Let X be a topological space. If we have a function g : 2X → 2X such that it satisfies:

(i) g(∅) = ∅.

(ii) For all A ⊆ X, we have g(A) ⊆ A.

(iii) For all A ⊆ X, we have g(g(A)) = g(A).

(iv) For all A,B ⊆ X, we have g(A) ∩ g(B) = g(A ∩B).

then g is the interior function of the topology on X.

This result follows from part (b). Let g(A) = X − f(X −A), where f is the closure function. ■
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