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Problem 1

Part (a)

Let X be a set and let I be an index set. Suppose that for each i € I, we have a topology 7; on X.
Prove that 7 = (,; 7; is also a topology on X. Prove that 7" < 7; for all i € I, and in fact, if there is
another topology 77 such that 77 < 7; for all ¢ € I, then 7/ < T (i.e., T is the ”greatest lower bound”
of all of the T;).

Solution: First we prove that T =()..; 7; is also a topology on X.

iel
e Clearly, 0, X € T;,VieI,s0 0, X € T.
e Let J be an index set and A; € 7,4 € J, then Vj € J we have A; € T;,Vi € I. Let i € I, then
U A; € T; since each 7; is a topology. We picked 4 arbitrarily, so it follows that U €T, Viel.
jeJ jeJ
Hence, U AjeT
jeJ
e Let J be a finite index set and A; € 7,5 € J, then Vj € J we have A; € T;,Vi € I. Let
i € I, then ﬂ A; € 7T; since each 7T; is a topology. We picked 4 arbitrarily, so it follows that
jeJ
() € 7i.Vie I Hence, (| A; €T
JjeJ jEJ
With the four axioms of a topology, T is a topology.
Let ¢ € I, then we have that 7 C 7; by definition. Therefore, T < 7;,Vi € I.

Let 77 be a topology on X such that 7' < 7;,Vi € I. Assume that 7 is a strict subset of 77 i.e.
T < T'. Then 7' — T is nonempty, and we can take any A € 7' — 7. Such A does not belong to
T = NierTi, which means that 35 € I such that A ¢ T;, which contradicts that fact that Ae 7. W

Part (b)
Let X = {1,2,3} and find two topologies T; and T3 on X such that 7; U 7Tz is not a topology.
Solution: T1 = {0,{1}, X}, Tz = {0, {2}, X} [ |



Problem 2

Let X be a topological space with topology T, let A be a subset of X, and let B be a subset of A, i.e.,
B C A C X. There are two potentially different topologies we can put on B: First, B is a subset of X
so we can give it the subspace topology 7. Second, we can give A the subspace topology T4 from X,
and then give B the subspace topology (74)p that comes from being a subset of A. Prove that they
are actually the same: Tp = (Ta)5.

Solution: Let E € Tg, then E = BN U for some U € 7. Since B C A, we have B = AN B. Then
E=(ANB)NU=BN(ANU) € (Ta)p. Hence, Tg C (Ta)B.

Other direction follows similarly. Let E € (T4)p, then E = (U N A) N B for some U € 7. But
E=(UNA)NB=UNANB)=UNBETs. So, (Ta)s C Ts. m



Problem 3

Let X be a topological space and let A be a subspace. Prove that if U is open in A, then for any other
subset B of X, U N B is open in the subspace AN B.

Solution: U is open in A, so U = ANV for some V € T (the topology on X). It is clear that
UNB=(ANB)NV € Tans. UN B is open. [ ]



Problem 4

Let X be a topological space and let A, B be subsets of X.

Part (a)
Prove that AUB = AU B.
Solution: By definition, A = ﬂ E;,B = ﬂ F;, where each I, J indexes over all of the closed sets such

iel jeJ
that A C F;, B C F}, respectively.

AUB = (QE) U (J@Fj) (iﬁjQXJEquj

For any choice of (i, ), E; U F} is a closed set that contains AU B. Therefore AUB C AU B.
The other direction follows nicely. We have A, B C AUB, so A,B C AUB. |

Part (b)
Prove that ANB C AN B.

Solution: Proceed similarly as in (a). We have

ANB= (ﬂE)m(ﬂF]) = N ENE

icl JjeJ (i,5)eIxJ

For any choice of (i,5), E; N Fj is a closed set that contains A N B. Therefore AN B C AN B. [

Part (c)

Give an example where A N B is not equal to AN B.
[Hint: There is an example where X = R and A, B are open intervals.]

Solution: With X = R, consider A = (—1,0), B = (0,1). Then AN B =0 and AN B = {0}. |



Problem 5

Let X be a topological space and let A be a subset of X. Prove the identities
X-A=(X-A)° X-A=X-A
Solution: The solution is trivial for A = (), X. Consider the when it is not.

For the first statement, we have by definition that (X — A)° = U E;, where I indexes over every open

iel
set E;, such that F; C X —A. X — A is an open set that is contained in X — A4, s0 X — A C (X — A)°.
Now, assume that X — A C E; for some i € I. Then E; — (X — A) = E; N A is nonempty. E; N A =
E,Nn(AUA) = (E;NA)U(E; N A’) is nonempty. Since F; C X — A, we have that F; N A is empty
and that E; N A’ must be nonempty. Take any p € E; N A’ and E; is a neighborhood of p, which is a
limit point. p is a limit point if and only if every neighborhood of p intersects A. E; must intersect A.
We have a contradiction.

For the second statement, it is equivalent to proving A° = X — X — A, which is just the first statement.
Replace A with X — A, then (X —A)°=X - A



Problem 6

Let I be an index set and suppose we have a topological space X; for each ¢ € I. Let X be the disjoint
union of all of the X;:
X=|]x

iel
Formally, this is the set of pairs {(¢,2) | i € I,z € X;}. Let T be the collection of subsets U of X such
that for all i € I, the set U; = {z € X, | (i,2) € U} is open in X;. Prove that T is a topology for X.
Solution: If U = (), then Vi € I we have U; = (), which makes U; open in X;. # € 7.
If U = X, then Vi € I we have U; = X;, which makes U; open in X;. X € T.

Let J be an index set, and U; open Vj € J. By definition, we have that (U;); is open in X,;,Vi € I.
Let ¢ € I and consider ( U Uj) -, which is just U (Uj;)i, a union of sets that are open in X;. Thus
jes " jeJ

( U Uj)A is open in X;,V: € I, making it open in X.

jes "
Proceed with a setup similar to the previous section, but this time let J be a finite index set. Let ¢ € T
and consider ( ﬂ Uj) , which is just ﬂ (U;);, a finite intersection of sets that are open in X;. Thus

jes " jet
( ﬂ Uj) is open in X;,Vi € I, making it open in X. |
3
jeJ



Problem 7

Let X = Z be the set of integers. For each pair of integers m,n such that m # 0, define the subset

b ={mx+n|zecZ}.

Part (a)

Prove that the collection of by, ,, (with m # 0 but no restriction on n) form a basis for a topology,
which we will just call 7.
[Remark: Since each by, ,, is infinite, all non-empty open sets in 7 are infinite.]

Solution: Let x € Z and © € by, N by g. Then x = my + n = pz + ¢ for some y, 2z € Z. Then we have
Z € bmpr and byyp o C by Nbp g [ |

Part (b)
Prove that each by, , is both open and closed in 7.
m
Solution: by, , is vacuously open by construction. Furthermore, Z — by, y, = U bym.,i, which open.
i=1,i%n
b, n is also closed. [ |
Part (c)
Prove that
Z—{1,-1} = Jbpo
p
where the union is over all prime numbers p.

Solution: Proof is trivial if « is prime or composite or 0. If x = 1, —1, then assume mp = = m =

[ ISEES

for some m, where p is prime. But p > 1,Vp, so |m| < 1, which can not be true.

Part (d)

Using the above facts, conclude that there must be infinitely many primes.
[Hint: use proof by contradiction.]

Solution: Assume there are finitely many primes. Then Z—{—1, 1} is nonempty and clopen. Z—{—1,1}
is open, but can’t be closed since {—1,1} is not open. A contradiction. |



Problem 8

Part (a)

Let X be a topological space. Given a subset A, define f(A) = A, so that we have a function
f: 2% — 2% which we call closure. Prove that f satisfies these 4 properties:

(i) £(0) =0.
(ii) For all A C X, we have A C f(A).
(iii) For all A C X, we have f(A) = f(f(4)).
(iv) For all A, B C X, we have f(A)U f(B) = f(AU B).

Solution: For (i), () is closed, so the closure is itself.

For (ii), we have A C A.

For (iii), f(A) = A, which is closed. The closure of a closed set is itself, so A = f(A).

For (iv), see Problem 4 Part (a). |

Part (b)

Conversely, suppose that X is a set and we are given a function g : 2% — 2% satisfying the 4 conditions
above. Prove that there is a unique topology on X so that f is the closure function of this topology.
In particular, this says that we could define topologies in terms of functions satisfying (i)—(iv) instead
of with open sets.

Solution: From (iv), we get monotonicity of f. Let A C B, then AU B = B. And thus

f(A) C F(A)Uf(B) = f(AUB) = f(B)
Let T={ACX : X-A=f(X-A)} f0) =0 — fX-X)=X-X = XeT.
X-0=XCf(X)and f(X)€2¥ <= f(X)CX. f(X)=X,s00€T.

Let I be an index set and A; € 7,Vi € I. From (ii), X — UAi - f(X — UAZ) Then we have

il iel

X - UAZ- = m(X —A;) = ﬂ f(X — A;) since A; € T,Vi € I. Observe that

i€l i€l i€l

F(N&E=a)) crx —ay)vjel = f(X-4)) SV FX = 4) =X - J 4

il iel iel iel
And thus, X — U A; C f(X — U Ai>, making 7 closed under arbitrary union.
iel icl
Let I be a finite index set and A; € T,Vi € I. Then f(X—ﬂ Ai) = f( U(X—Ai)) = U f(X=A;) =
iel iel iel

U(X —A)=X - ﬂ A;. T is closed under finite intersection. Therefore, T is a topology.

icl i€l

Now we show that f(A) = A,YA C X. Let A C X. The solution is trivial if A = (), X. If not, then
we have f(A) = f(f(A)), so A= X — B for some B € T. This makes f(A) closed and it contains A.
A C f(A). But then A is the intersection of all closed sets F; such that A C E;. By monotonicity,
f(A) C f(E;) = E;,Vie I = f(A) C A. Therefore f(A) = A, and f is the closure function of T

Uniqueness follows from construction where there exists unique A such that A = f(A) = A, which
defined a unique collection of open sets. Essentially, we have defined a topology by first defining the
closed sets. |



Part (c)
Find and prove the analogous statement for the function that takes a subset to its interior.
Solution: Let X be a topological space. If we have a function g : 2X — 2% such that it satisfies:
(i) g(0) =0.
(ii) For all A C X, we have g(A) C A.
(iii) For all A C X, we have g(g(4)) = g(A).
(iv) For all A, B C X, we have g(A) N g(B) = g(AN B).
then ¢ is the interior function of the topology on X.
This result follows from part (b). Let g(4) = X — f(X — A), where f is the closure function.
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